Skip to main content
×
×
Home

Estimation of body composition from bioelectrical impedance of body segments: Comparison with dual-energy X-ray absorptiometry

  • S. P. Stewart (a1), P. N. Bramley (a2), R. Heighton (a2), J. H. Green (a2), A. Horsman (a1), M. S. Losowsky (a2) and M. A. Smith (a1)...
Abstract

In twenty-eight healthy subjects, ten men and eighteen women, with a range in body mass index (BMI) of 17.9–31.6 kg/m2 and an age range 20–60 years, body composition was estimated by dual-energy X-ray absorptiometry (DEXA), skinfold anthropometry (SFA) and bioelectrical impedance analysis (BIA) of the ‘whole body’and body segments. In thirteen subjects muscle mass was also estimated by 24 h urinary creatinine excretion. The relationship between fat-free mass (FFM) determined by DEXA and the impedance index of each body segment (calculated as Iength2/impedance (Z)) was analysed. The strongest correlation was between FFM (DEXA) and height2/‘whole-body’Z (Zw) (r 0.97 for the combined sexes, standard error of estimate (SEE) 2.72 kg). Separate prediction equations were found to be necessary for males and females when estimating FFM from BIA measurement of the arm (for men, r 0.93, SEE 1.98 kg; for women, r 0.75, SEE 2.87 kg). Muscle mass derived from 24 h creatinine excretion showed weak correlation with FFM (DEXA) (r 0.57, P = 0.03) and no correlation with FFM (SFA). FFM (SFA) correlated well with both FFM (DEXA) (r 0.96, SEE = 3.12 kg) and with height2/Zw (r 0.92, SEE 4.52 kg). Measurement of the impedance of the arm offers a simple method of assessing the composition of the whole body in normal individuals, and it appears comparable with other methods of assessment.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Estimation of body composition from bioelectrical impedance of body segments: Comparison with dual-energy X-ray absorptiometry
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Estimation of body composition from bioelectrical impedance of body segments: Comparison with dual-energy X-ray absorptiometry
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Estimation of body composition from bioelectrical impedance of body segments: Comparison with dual-energy X-ray absorptiometry
      Available formats
      ×
Copyright
References
Hide All
Baumgartner, R. N., Chumlea, W. C. & Roche, A. F. (1989). Estimation of body composition from bioelectrical impedance of body segments. American Journal of Clinical Nutrition 50, 221226.
Clarys, J. P. & Marfell-Jones, M. J. (1986). Anatomical segmentation in humans and the prediction of segmental masses from intra-segmental anthropometry. Human Biology 58, 771782.
Diaz, E. O., Villar, J., Immink, M. & Gonzales, T. (1989). Bioimpedance or anthropometry? European Journal of Clinical Nutrition 43, 129137.
Durnin, J. V. G. A. & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thicknesses: measurements on 481 men and women aged 16–72 years. British Journal of Nutrition 32, 7792.
Fuller, N. J. & Elia, M. (1989). Potential use of bioelectrical impedance of the ‘whole body’ and of body segments for the assessment of body composition: comparison with densitometry and anthropometry. European Journal of Clinical Nutrition 43, 779791.
Gotfredsen, A., Jensen, J., Borg, J. & Christiansen, C. (1986). Measurement of lean body mass and total body fat using dud1 photon absorptiometry. Metabolism 35, 8893.
Harrison, G. G., Buskirk, E. R., Carter, J. E., Johnston, F. E., Lohmon, T. G., Pollock, M. L., Roche, A. F. & Wilmore, J. (1988). Skinfold thicknesses and measurement technique. In Ahthropometric Standardization Reference Manual, pp. 5580 [Lohman, T. G., Roche, T. G. and Martorell, R., editors]. Champaign, Illinois: Human Kinetic Books.
Hassager, C., Sorensen, S. S., Nielsen, B. & Christiansen, C. (1989). Body composition measurement by dual photon absorptiometry: comparison with body density and total body potassium measurements. Clinical Physiology 9, 353360.
Heymsfield, S. B., Arteaga, C., McManus, C., Smith, J. & Moffitt, S. (1983). Measurement of muscle mass in humans: validity of the 24-hour urinary creatinine method. American Journal of Clinical Nutrition 31, 478494.
Heymsfield, S. B., McManus, C., Smith, J., Stevens, V. & Nixon, D. W. (1982). Anthropometric measurement of muscle mass: revised equations for calculating bone-free arm muscle area. American Journal of Clinical Nutrition 36, 680690.
Heymsfield, S. B., Wang, J., Heshka, S., Kehayias, J. J. & Pierson, R. N. (1989). Dual photon absorptiometry: comparison of bone mineral and soft tissue mass measurements in vivo with established methods. American Journal of Clinical Nutrition 49, 12831289.
Hoffer, E. C., Meador, C. K. & Simpson, D. C. (1969). Correlation of whole-body impedance with total body water volume. Journal of Applied Physiology 21, 531534.
Lukaski, H. C. (1987). Methods for the assessment of human body composition: traditional and new. American Journal of Clinical Nutrition 46, 537556.
Lukaski, H. C., Bolonchuk, W. W., Hall, C. B. & Siders, W. A. (1986). Validation of tetrapolar bioelectrical impedance method to assess human body composition. Journal of Applied Physioiogy 60, 13271332.
Lukaski, H. C., Johnson, P. E., Bolonchuk, W. W. & Lykken, G. I. (1985). Assessment of fat-free mass using bioelectrical impedance measurements of the human body. American Journal of Clinical Nutrition 41, 810817.
McCullough, A. J., Mullen, K. D. & Kalhan, S. C. (1991). Measurements of total body and extracellular water in cirrhotic patients with and without ascites. Hepatology 14, 11021111.
Mazess, R. B., Barden, H. S., Bisek, J. P. & Hanson, J. (1990). Dual-energy X-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. American Journal of Clinical Nutrition 51, 11061112.
Mazess, R. B., Peppler, W. W. & Gibbons, M. S. (1984). Total body composition by dual-photon (153Gd) absorptiometry. American Journal of Clinical Nutrition 40, 834839.
Presta, E., Segal, K. R., Gutin, B., Harrison, G. G. & Van Itallie, T. B. (1983). Comparison in man of total body electrical conductivity and lean body mass derived from body density: Validation of a new body composition method. Metabolism 32, 524527.
Schneeweiss, B., Graninger, W., Ferenci, P., Eichinger, S., Grimm, G., Schneider, B., Laggner, A. N., Lenz, K. & Kleinberger, G. (1990). Energy metabolism in liver disease. Hepatology 11, 387393.
Segal, K. R., Burastero, S., Chun, A., Coronel, P., Pierson, R. N. & Wang, J. (1991). Estimation of extracellular and total body water by multiple-frequency bioelectrical-impedance measurement. American Journal of Clinical Nutrition 54, 2629.
Settle, R. G., Foster, K. R., Epstein, B. R. & Mullen, J. L. (1988). Nutritional assessment: whole body impedance and body fluid compartments. Nutrition and Cancer 2, 7280.
Shanbhogue, R. L. K., Bistrian, B. R., Jenkins, R. L., Jones, C., Benotti, P. & Blackburn, G. L. (1987). Resting energy expenditure in patients with end-stage liver disease and in normal population. Journal off Parenterul and Enteral Nutritian 11, 305308.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed