Skip to main content Accessibility help
×
Home

Fat mass- and obesity-associated genotype, dietary intakes and anthropometric measures in European adults: the Food4Me study

  • Katherine M. Livingstone (a1), Carlos Celis-Morales (a1), Santiago Navas-Carretero (a2) (a3), Rodrigo San-Cristobal (a2) (a3), Hannah Forster (a4), Clare B. O’Donovan (a4), Clara Woolhead (a4), Cyril F. M. Marsaux (a5), Anna L. Macready (a6), Rosalind Fallaize (a6), Silvia Kolossa (a7), Lydia Tsirigoti (a8), Christina P. Lambrinou (a8), George Moschonis (a8), Magdalena Godlewska (a9), Agnieszka Surwiłło (a9), Christian A. Drevon (a10), Yannis Manios (a8), Iwona Traczyk (a9), Eileen R. Gibney (a4), Lorraine Brennan (a4), Marianne C. Walsh (a4), Julie A. Lovegrove (a6), J. Alfredo Martinez (a2) (a3), Wim H. M. Saris (a5), Hannelore Daniel (a7), Mike Gibney (a4) and John C. Mathers (a1)...

Abstract

The interplay between the fat mass- and obesity-associated (FTO) gene variants and diet has been implicated in the development of obesity. The aim of the present analysis was to investigate associations between FTO genotype, dietary intakes and anthropometrics among European adults. Participants in the Food4Me randomised controlled trial were genotyped for FTO genotype (rs9939609) and their dietary intakes, and diet quality scores (Healthy Eating Index and PREDIMED-based Mediterranean diet score) were estimated from FFQ. Relationships between FTO genotype, diet and anthropometrics (weight, waist circumference (WC) and BMI) were evaluated at baseline. European adults with the FTO risk genotype had greater WC (AA v. TT: +1·4 cm; P=0·003) and BMI (+0·9 kg/m2; P=0·001) than individuals with no risk alleles. Subjects with the lowest fried food consumption and two copies of the FTO risk variant had on average 1·4 kg/m2 greater BMI (P trend=0·028) and 3·1 cm greater WC (P trend=0·045) compared with individuals with no copies of the risk allele and with the lowest fried food consumption. However, there was no evidence of interactions between FTO genotype and dietary intakes on BMI and WC, and thus further research is required to confirm or refute these findings.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fat mass- and obesity-associated genotype, dietary intakes and anthropometric measures in European adults: the Food4Me study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fat mass- and obesity-associated genotype, dietary intakes and anthropometric measures in European adults: the Food4Me study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fat mass- and obesity-associated genotype, dietary intakes and anthropometric measures in European adults: the Food4Me study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Professor J. C. Mathers, fax +44 191 208 1101, email john.mathers@newcastle.ac.uk

Footnotes

Hide All

These authors contributed equally to this work.

Footnotes

References

Hide All
1. Organisation for Economic Co-operation and Development (2012) Health at a Glance: Europe 2012. OECD Publishing. http://dx.doi.org/10.1787/9789264183896-en
2. Ng, M, Fleming, T, Robinson, M, et al. (2014) Global, regional, and national prevalence of overweight and obesity in children and adults during 1980–2013: a systematic analysis for the Global Burden of Disease Study 2013. Lancet 384, 766781.
3. van Vliet-Ostaptchouk, JV, Snieder, H & Lagou, V (2012) Gene–lifestyle interactions in obesity . Curr Nutr Rep 1, 184196.
4. Ahmad, S, Rukh, G, Varga, TV, et al. (2013) Gene × physical activity interactions in obesity: combined analysis of 111,421 individuals of European ancestry. PLoS Genet 9, e1003607.
5. Frayling, TM, Timpson, NJ, Weedon, MN, et al. (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science 316, 889894.
6. Locke, AE, Kahali, B, Berndt, SI, et al. (2015) Genetic studies of body mass index yield new insights for obesity biology. Nature 518, 197206.
7. Shungin, D, Winkler, TW, Croteau-Chonka, DC, et al. (2015) New genetic loci link adipose and insulin biology to body fat distribution. Nature 518, 187196.
8. Speakman, JR, Rance, KA & Johnstone, AM (2008) Polymorphisms of the FTO gene are associated with variation in energy intake, but not energy expenditure. Obesity (Silver Spring) 16, 19611965.
9. Corella, D, Ortega-Azorín, C, Sorlí, JV, et al. (2012) Statistical and biological gene-lifestyle interactions of MC4R and FTO with diet and physical activity on obesity: new effects on alcohol consumption. PLOS ONE 7, e52344.
10. Livingstone, KM, Celis-Morales, C, Lara, J, et al. (2015) Associations between FTO genotype and total energy and macronutrient intake in adults: a systematic review and meta-analysis. Obes Rev 16, 666678.
11. Guallar-Castillón, P, Rodríguez-Artalejo, F, Fornés, NS, et al. (2007) Intake of fried foods is associated with obesity in the cohort of Spanish adults from the European prospective investigation into cancer and nutrition. Am J Clin Nutr 86, 198205.
12. Sonestedt, E, Roos, C, Gullberg, B, et al. (2009) Fat and carbohydrate intake modify the association between genetic variation in the FTO genotype and obesity. Am J Clin Nutr 90, 14181425.
13. Goni, L, Cuervo, M, Milagro, FI, et al. (2015) A genetic risk tool for obesity predisposition assessment and personalized nutrition implementation based on macronutrient intake. Genes Nutr 10, 445.
14. Brunkwall, L, Ericson, U, Hellstrand, S, et al. (2013) Genetic variation in the fat mass and obesity-associated gene (FTO) in association with food preferences in healthy adults. Food Nutr Res 57, 10.3402/fnr.v57i0.20028.
15. Qi, Q, Chu, AY, Kang, JH, et al. (2014) Fried food consumption, genetic risk, and body mass index: gene-diet interaction analysis in three US cohort studies. BMJ 348, 1610.
16. Qi, Q, Chu, AY, Kang, JH, et al. (2012) Sugar-sweetened beverages and genetic risk of obesity. N Engl J Med 367, 13871396.
17. Razquin, C, Martinez, JA, Martinez-Gonzalez, MA, et al. (2010) A 3-year intervention with a Mediterranean diet modified the association between the rs9939609 gene variant in FTO and body weight changes. Int J Obes (Lond) 34, 266272.
18. Celis-Morales, C, Livingstone, KM, Marsaux, CFM, et al. (2015) Design and baseline characteristics of the Food4Me study: a web-based randomised controlled trial of personalised nutrition in seven European countries. Genes Nutr 10, 450.
19. Livingstone, K, Celis-Morales, C, Navas-Carretero, S, et al. (2015) Profile of European adults interested in internet-based personalised nutrition: the Food4Me study. Eur J Nutr (epublication 17 April 2015).
20. Forster, H, Fallaize, R, Gallagher, C, et al. (2014) Online dietary intake estimation: the Food4Me food frequency questionnaire. J Med Internet Res 16, e150.
21. Fallaize, R, Forster, H, Macready, LA, et al. (2014) Online dietary intake estimation: reproducibility and validity of the Food4Me food frequency questionnaire against a 4-day weighed food record. J Med Internet Res 16, e190.
22. Food Standards Agency (2002) McCance and Widdowson’s The Composition of Foods, 6th ed. Cambridge: Royal Society of Chemistry.
23. Guenther, PM, Casavale, KO, Reedy, J, et al. (2013) Update of the Healthy Eating Index: HEI-2010. J Acad Nutr Diet 113, 569580.
24. Estruch, R, Ros, E, Salas-Salvadó, J, et al. (2013) Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368, 12791290.
25. Martínez-González, , Corella, D, Salas-Salvadó, J, et al. (2012) Cohort profile: design and methods of the PREDIMED study. Int J Epidemiol 41, 377385.
26. Celis-Morales, C, Livingstone, KM, Woolhead, C, et al. (2015) How reliable is Internet-based self-reported identity, socio-demographic and obesity measures in European adults? Genes Nutr 10, 476.
27. Goldberg, GR, Black, AE, Jebb, SA, et al. (1991) Critical evaluation of energy intake data using fundamental principles of energy physiology: 1. Derivation of cut-off limits to identify under-recording. Eur J Clin Nutr 45, 569581.
28. Henry, CJK (2005) Basal metabolic rate studies in humans: measurement and development of new equations. Public Health Nutr 8, 11331152.
29. Hébert, JR, Peterson, KE, Hurley, TG, et al. (2001) The effect of social desirability trait on self-reported dietary measures among multi-ethnic female health center employees. Ann Epidemiol 11, 417427.
30. Schröder, H, Fïto, M & Covas, MI (2007) Association of fast food consumption with energy intake, diet quality, body mass index and the risk of obesity in a representative Mediterranean population. Br J Nutr 98, 12741280.
31. Fisher, E, Meidtner, K, Ängquist, L, et al. (2012) Influence of dietary protein intake and glycemic index on the association between TCF7L2 HapA and weight gain. Am J Clin Nutr 95, 14681476.
32. Qi, Q, Bray, GA, Smith, SR, et al. (2011) Insulin receptor substrate 1 gene variation modifies insulin resistance response to weight-loss diets in a 2-year randomized trial: the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. Circulation 124, 563571.
33. Xu, M, Qi, Q, Liang, J, et al. (2013) Genetic determinant for amino acid metabolites and changes in body weight and insulin resistance in response to weight-loss diets: the Preventing Overweight Using Novel Dietary Strategies (POUNDS LOST) trial. Circulation 127, 12831289.
34. Mattei, J, Qi, Q, Hu, FB, et al. (2012) TCF7L2 genetic variants modulate the effect of dietary fat intake on changes in body composition during a weight-loss intervention. Am J Clin Nutr 96, 11291136.
35. Grau, K, Hansen, T, Holst, C, et al. (2009) Macronutrient-specific effect of FTO rs9939609 in response to a 10-week randomized hypo-energetic diet among obese Europeans. Int J Obes (Lond) 33, 12271234.
36. Moleres, A, Ochoa, MC, Rendo-Urteaga, T, et al. (2012) Dietary fatty acid distribution modifies obesity risk linked to the rs9939609 polymorphism of the fat mass and obesity-associated gene in a Spanish case–control study of children. Br J Nutr 107, 533538.
37. Lappalainen, T, Lindström, J, Paananen, J, et al. (2012) Association of the fat mass and obesity-associated (FTO) gene variant (rs9939609) with dietary intake in the Finnish Diabetes Prevention Study. Br J Nutr 108, 18591865.
38. Corella, D, Arnett, DK, Tucker, KL, et al. (2011) A high intake of saturated fatty acids strengthens the association between the fat mass and obesity-associated gene and BMI. J Nutr 141, 22192225.
39. Phillips, CM, Kesse-Guyot, E, McManus, R, et al. (2012) High dietary saturated fat intake accentuates obesity risk associated with the fat mass and obesity-associated gene in adults. J Nutr 142, 824831.
40. Ortega-Azorin, C, Sorli, J, Asensio, E, et al. (2012) Associations of the FTO rs9939609 and the MC4R rs17782313 polymorphisms with type 2 diabetes are modulated by diet, being higher when adherence to the Mediterranean diet pattern is low. Cardiovasc Diabetol 11, 137.
41. Ankarfeldt, MZ, Larsen, SC, Ängquist, L, et al. (2014) Interaction between genetic predisposition to adiposity and dietary protein in relation to subsequent change in body weight and waist circumference. PLOS ONE 9, e110890.
42. Martinez, JA, Navas-Carretero, S, Saris, WHM, et al. (2014) Personalized weight loss strategies – the role of macronutrient distribution. Nat Rev Endocrinol 10, 749760.
43. Speakman, JR (2015) The ‘fat mass and obesity related’ (FTO) gene: mechanisms of impact on obesity and energy balance. Curr Obes Rep 4, 7391.
44. Claussnitzer, M, Dankel, SN, Kim, KH, et al. (2015) FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med 373, 895907.
45. Rosen, CJ & Ingelfinger, JR (2015) Unraveling the function of FTO variants. N Engl J Med 373, 964965.
46. Bludell, JE, Lawton, CL, Cotton, JR, et al. (1996) Control of human appetite: implications for the intake of dietary fat. Annu Rev Nutr 16, 285319.
47. Fillion, L & Henry, CJK (1998) Nutrient losses and gains during frying: a review. Int J Food Sci Nutr 49, 157168.
48. Wang, T, Jia, W & Hu, C (2015) Advancement in genetic variants conferring obesity susceptibility from genome-wide association studies. Front Med 9, 146161.
49. Johansson, L, Solvoll, K, Bjørneboe, GE, et al. (1998) Under- and overreporting of energy intake related to weight status and lifestyle in a nationwide sample. Am J Clin Nutr 68, 266274.

Keywords

Type Description Title
WORD
Supplementary materials

Livingstone supplementary material
Livingstone supplementary material 1

 Word (74 KB)
74 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed