Skip to main content Accessibility help
×
Home

Fate of fructo-oligosaccharides in the human intestine

  • Martine S. Alles (a1), Joseph G. A. J. Hautvast (a1), Fokko M. Nagengast (a2), Ralf Hartemink (a3), Katrien M. J. Van Laere (a3) and Jan B. M. J. Jansen (a2)...

Abstract

There is a need for studies on colonic fermentation in order to learn more abouthealth and diseases of the colon. The aim of the present study was to evaluate the fate of twodifferent doses of fructo-oligosaccharides (5 and 15 g/d) v. glucose in the intestine of healthy men. Twenty-four volunteers participated in a 5-weekstudy. The study was a completely balanced multiple crossover trial using an orthogonal Latin-square design for three periods, with supplement periods of 7 d and two 7 d wash-out periods. Breath samples and faecal samples were collected. There was a clear gaseous response to the consumption of fructo-oligosaccharides. The highest dose significantly increased 24 h integratedexcretion of breath H2 (P < 0·05). Breath H2 excretion after ingestion of 5 g fructo-oligosaccharides was higher than control, but did not reach significance. No effects on the total concentration of short-chain fatty acids in faeces were observed, no modification of the molar proportions of the various short-chain fatty acids was observed. The faecal pH did not change. No changes in faecal weight were observed. No fructo-oligosaccharides were recovered in faeces. We conclude that fructo-oligosaccharides added to the diet of young Western subjects are fully metabolized in the large intestine. The level of fermentation seems to be dose-dependent.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fate of fructo-oligosaccharides in the human intestine
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fate of fructo-oligosaccharides in the human intestine
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fate of fructo-oligosaccharides in the human intestine
      Available formats
      ×

Copyright

References

Hide All
Cummings, J. H., Bingham, S. A., Heaton, K. W. & Eastwood, M. A. (1992). Fecal weight, colon cancer risk, and dietary intake of nonstarch polysaccharides (dietary fibre). Gastroenterology 103, 17831789.
Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. E. & Macfarlane, G. T. (1987). Short-chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 12211227.
Gibson, G. R., Beatty, E. R., Wang, Z. & Cummings, J. H. (1995). Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.
Hayakawa, K., Mizutani, J., Wada, K., Masai, T., Yoshihara, I. & Mitsuoka, T. (1990). Effects of soybean oligosaccharides on human faecal flora. Microbial Ecology in Health and Disease 3, 293303.
Heaton, K. W., Radvan, J., Cripps, H., Mountford, R. A., Braddon, F. E. M. & Hughes, A. O. (1992). Defecation frequency and timing, and stool form in the general population: a prospective study. Gut 33, 818824.
Hidaka, H., Eida, T., Takizawa, T., Tokunaga, T. & Tashiro, Y. (1986). Effects of fructooligosaccharides on intestinal flora and human health. Bifidobacteria Microflora 5, 3750.
Höverstad, T., Böhmer, T. & Fausa, O. (1982). Absorption of short chain fatty acids from the human colon measured by the 14CO2 breath test. Scandinavian Journal of Gastroenterology 17, 373378.
Ito, M., Deguchi, Y., Miyamori, A., Matsumoto, K., Kikuchi, H., Kobayashi, Y., Tajema, Y. & Kan, T. (1990). Effects of administration of galactooligosaccharides on the human faecal microflora, stool weight and abdominal sensation. Microbial Ecology in Health and Disease 3, 285292.
Koo, M. & Rao, A. V. (1991). Long-term effect of Bifidobacteria and Neosugar on precursor lesions of colonic cancer in CFl mice. Nutrition and Cancer 16, 249257.
Leclercq, C., Avalle, V., Ranaldi, L., Toti, E. & Ferro-Luzzi, A. (1990). Simplifying the lithium-marker technique used to assess the dietary intake of discretionary sodium in population studies. Clinical Science 79, 227231.
McBurney, M. I. (1991). Starch malabsorption and stool excretion are influenced by the menstrual cycle in women consuming low-fibre western diets. Scandinavian Journal of Gastroenterology 26, 880886.
Macfarlane, G. T., Gibson, G. R. & Cummings, J. H. (1992) Comparison of fermentation reactions in different regions of the human colon. Journal of Applied Bacteriology 72, 5764.
Masai, T., Wada, K., Hayakawa, K., Yoshihara, I. & Mitsuoka, T. (1987). Effects of soybean oligosaccharides on human intestinal flora and metabolic activities. Japanese Journal of Bacteriology 42, 313325.
Ministerie, van Welzijn, Volksgezondheid en, Cultuur & Ministerie, van Landbouw en Visserij (1988). Wat eet Nederland: resultaten van de voedselconsumptiepeiling 1987–1988. Rijswijk: Centrale Directie Voorlichting, Documentatie en Bibliotheek.
Mitsuoka, T. (1990). Bifidobacteria and their role in human health. Journal of Industrial Microbiology 6, 263268.
Mitsuoka, T., Hidaka, H. & Eida, T. (1987). Effect of fructo-oligosaccharides on intestinal microflora. Die Nahrung 31, 421436.
Modler, H. W., McKellar, R. C. & Yaguchi, M. (1990). Bifidobacteria and bifidogenic factors. Canadian Institute of Food Science and Technology 23, 2941.
Nagengast, F. M., van Erp, J., Koopman, J. & van Tongeren, J. (1988). The relationship between methane (CH4) production in vitro and excretion in breath. Gastroenterology 94, A319.
Nilsson, U. & Björck, I. (1988). Availability of cereal fructans and inulin in the rat intestinal tract. Journal of Nutrition 118, 14821486.
Oku, T., Tokunaga, T. & Hosoya, N. (1984). Nondigestibility of a new sweetener, ‘Neosugar’, in the rat. Journal of Nutrition 114, 15741581.
Rumessen, J. J. (1992). Hydrogen and methane breath tests for evaluation of resistant carbohydrates. European Journal of Clinical Nutrition 46, S77S90.
Rumessen, J. J., Bodé, S., Hamberg, O. & Gudmand-Hoyer, E. (1990 a). Fructans of Jerusalem artichokes: intestinal transport, absorption, fermentation, and influence on blood glucose, insulin, and C-peptide responses in healthy subjects. American Journal of Clinical Nutrition 52, 675681.
Rumessen, J. J., Hamberg, O. & Gudmand-Hoyer, E. (1990 b). Interval sampling of end-expiratory hydrogen concentrations to quantify carbohydrate malabsorption. Gut 31, 3742.
Sanchez-Castillo, C. P., Seidell, J. & James, W. P. T. (1987). The potential use of lithium as a marker for the assessment of the sources of dietary salt: cooking studies and physiological experiments in men. Clinical Science 72, 8186.
Spiegel, J. E., Rose, R., Karabell, P., Frankos, V. H. & Schmitt, D. F. (1994). Safety and benefits of fructooligosaccharides as food ingredients. Food Technology 01, 8589.
Stephen, A. M. & Cummings, J. H. (1980). The microbial contribution to human faecal mass. Journal of Medical Microbiology 1345, 4556.
Stichting Nederlands Voedingsstoffenbestand (NEVO) (1986). NEVO Table (in Dutch), The Hague: The Netherlands Bureau for Food and Nutrition Education
Stone-Dorshow, T. & Levitt, M. D. (1987). Gaseous response to ingestion of a poorly absorbed fructo-oligosaccharide sweetener. American Journal of Clinical Nutrition 46, 6165.
Tokunaga, T., Oku, T. & Hosoya, N. (1989). Utilization and excretion of a new sweetener, fructooligosaccharide (neosugar), in rats. Journal of Nutrition 119, 553559.
van Houwelingen, R., Nordoy, A., van der Beek, E., Houtsmuller, U., de Metz, M. & Hornstra, G. (1987). Effect of a moderate fish intake on blood pressure, bleeding time, hematology, and clinical chemistry in healthy males. American Journal of Clinical Nutrition 46, 424436.
van Munster, I. P., Tangerman, A. & Nagengast, F. M. (1994). Effect of resistant starch on colonic fermentation, bile acid metabolism, and mucosal proliferation. Digestive Diseases and Sciences 39, 834842.
Wang, X. & Gibson, G. R. (1993). Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Journal of Applied Bacteriology 75, 373380.
Wolever, T. M. S. & Jenkins, D. J. A. (1986). The use of the glycemic index in predicting the blood glucose response to mixed meals. American Journal of Clinical Nutrition 43, 167172.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed