Skip to main content Accessibility help
×
Home

Flavanol monomer-induced changes to the human faecal microflora

  • Xenofon Tzounis (a1), Jelena Vulevic (a2), Gunter G. C. Kuhnle (a3), Trevor George (a1), Jadwiga Leonczak (a4), Glenn R. Gibson (a2), Catherine Kwik-Uribe (a4) and Jeremy P. E. Spencer (a1)...

Abstract

We have investigated the bacterial-dependent metabolism of ( − )-epicatechin and (+)-catechin using a pH-controlled, stirred, batch-culture fermentation system reflective of the distal region of the human large intestine. Incubation of ( − )-epicatechin or (+)-catechin (150 mg/l or 1000 mg/l) with faecal bacteria, led to the generation of 5-(3′,4′-dihydroxyphenyl)-γ-valerolactone, 5-phenyl-γ-valerolactone and phenylpropionic acid. However, the formation of these metabolites from (+)-catechin required its initial conversion to (+)-epicatechin. The metabolism of both flavanols occurred in the presence of favourable carbon sources, notably sucrose and the prebiotic fructo-oligosaccharides, indicating that bacterial utilisation of flavanols also occurs when preferential energy sources are available. (+)-Catechin incubation affected the growth of select microflora, resulting in a statistically significant increase in the growth of the Clostridium coccoidesEubacterium rectale group, Bifidobacterium spp. and Escherichia coli, as well as a significant inhibitory effect on the growth of the C. histolyticum group. In contrast, the effect of ( − )-epicatechin was less profound, only significantly increasing the growth of the C. coccoidesEubacterium rectale group. These potential prebiotic effects for both (+)-catechin and ( − )-epicatechin were most notable at the lower concentration of 150 mg/l. As both ( − )-epicatechin and (+)-catechin were converted to the same metabolites, the more dramatic change in the growth of distinct microfloral populations produced by (+)-catechin incubation may be linked to the bacterial conversion of (+)-catechin to (+)-epicatechin. Together these data suggest that the consumption of flavanol-rich foods may support gut health through their ability to exert prebiotic actions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Flavanol monomer-induced changes to the human faecal microflora
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Flavanol monomer-induced changes to the human faecal microflora
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Flavanol monomer-induced changes to the human faecal microflora
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Dr Jeremy P. E. Spencer, fax +44 118 931 0080, email j.p.e.spencer@reading.ac.uk

References

Hide All
1 Graf, BA, Milbury, PE & Blumberg, JB (2005) Flavonols, flavones, flavanones, and human health: epidemiological evidence. J Med Food 8, 281290.
2 Arts, ICW & Hollman, PCH (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81, Suppl. 1, S317S325.
3 Fisher, NDL, Hughes, M, Gerhard-Herman, M & Hollenberg, NK (2003) Flavanol-rich cocoa induces nitric-oxide-dependent vasodilation in healthy humans. J Hypertens 21, 22812286.
4 Heiss, C, Dejam, A, Kleinbongard, P, Schewe, T, Sies, H & Kelm, M (2003) Vascular effects of cocoa rich in flavan-3-ols. J Am Med Assoc 290, 10301031.
5 Taubert, D, Berkels, R, Roesen, R & Klaus, W (2003) Chocolate and blood pressure in elderly individuals with isolated systolic hypertension. J Am Med Assoc 290, 10291030.
6 Kuhnle, G, Spencer, JPE, Schroeter, H, Shenoy, B, Debnam, ES, Srai, SK, Rice-Evans, C & Hahn, U (2000) Epicatechin and catechin are O-methylated and glucuronidated in the small intestine. Biochem Biophys Res Commun 277, 507512.
7 Spencer, JPE (2003) Metabolism of tea flavonoids in the gastrointestinal tract. J Nutr 133, S3255S3261.
8 Gibson, GR, Beatty, ER, Wang, X & Cummings, JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.
9 Onoue, M, Kado, S, Sakaitani, Y, Uchida, K & Morotomi, M (1997) Specific species of intestinal bacteria influence the induction of aberrant crypt foci by 1,2-dimethylhydrazine in rats. Cancer Lett 113, 179186.
10 Rastall, RA (2004) Bacteria in the gut: friends and foes and how to alter the balance. J Nutr 134, S2022S2026.
11 O'Mahony, L, McCarthy, J, Kelly, P, et al. (2005) Lactobacillus and bifidobacterium in irritable bowel syndrome: symptom responses and relationship to cytokine profiles. Gastroenterology 128, 541551.
12 Saggioro, A (2004) Probiotics in the treatment of irritable bowel syndrome. J Clin Gastroenterol 38, Suppl. 6, S104S106.
13 Marteau, PR (2002) Probiotics in clinical conditions. Clin Rev Allergy Immun 22, 255273.
14 Gibson, GR, Probert, HM, Van Loo, J, Rastall, RA & Roberfroid, MB (2004) Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17, 259275.
15 Gibson, GR & Fuller, R (2000) Aspects of in vitro and in vivo research approaches directed toward identifying probiotics and prebiotics for human use. J Nutr 130, S391S395.
16 Kleessen, B, Hartmann, L & Blaut, M (2001) Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br J Nutr 86, 291300.
17 Wijnands, MVW, Appel, MJ, Hollanders, VMH & Woutersen, RA (1999) A comparison of the effect of dietary cellulose and fermentable galacto-oligosaccharides, in a rat model of colorectal carcinogenesis: fermentable fibre confers greater protection than non-fermetable fibre in both high and low fat backgrounds. Carcinogenesis 20, 651656.
18 Gibson, GR, Beatty, ER, Wang, X & Cummings, JH (1995) Selective stimulation of Bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.
19 Clavel, T, Fallani, M, Lepage, P, et al. (2005) Isoflavones and functional foods alter the dominant intestinal microbiota in postmenopausal women. J Nutr 135, 27862792.
20 Deprez, S, Brezillon, C, Rabot, S, Philippe, C, Mila, C, Lapierre, C & Scalbert, A (2000) Polymeric proanthocyanidins are catabolized by human colonic microflora into low-molecular-weight phenolic acids. J Nutr 130, 27332738.
21 Li, C, Lee, MJ, Sheng, S, et al. (2000) Structural identification of two metabolites of catechins and their kinetics in human urine and blood after tea ingestion. Chem Res Toxicol 13, 177184.
22 Lee, HC, Jenner, AM, Low, CS & Lee, YK (2006) Effect of tea phenolics and their aromatic fecal bacterial metabolites on intestinal microbiota. Res Microbiol 157, 876884.
23 Benzie, IFF & Strain, JJ (1996) The ferric reducing ability of plasma (FRAP) as a measure of “antioxidant power”. The FRAP assay. Anal Biochem 239, 7076.
24 Olano-Martin, E, Gibson, GR & Rastall, RA (2002) Comparison of the in vitro bifidogenic properties of pectins and pectic-oligosaccharides. J Appl Microb 93, 505511.
25 Tuohy, MK, Kolida, S, Lustenberger, MA & Gibson, RG (2001) The prebiotic effect of biscuits containing partially hydrolysed guar gum and fructo-oligosaccharides – a human volunteer study. Br J Nutr 86, 341348.
26 Spencer, JPE, Schroeter, H, Rechner, AR & Rice-Evans, C (2001) Bioavailability of flavan-3-ols and procyanidins: gastrointestinal tract influences and their relevance to bioactive forms in vivo. Antioxid Redox Signal 3, 10231039.
27 Frayn, KN (2003) Digestion and intestinal absorption. In Metabolic Regulation. A Human Perspective, 2nd ed. pp. 5982 [Frayn, KN, editor]. Oxford, UK: Blackwell Publishing.
28 Manach, C, Scalbert, A, Morand, C, Remesy, C & Jimenez, L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79, 727747.
29 Gibson, RG (1999) Dietary modulation of the human gut microflora using the prebiotics oligofructose and inulin. J Nutr 129, 14381441.
30 Wilson, M (2005) Short-chain fatty acids. In Microbial Inhabitants of Humans, pp. 388390 [M Wilson, editor]. Cambridge, UK: Cambridge University Press.
31 Hughes, R, Magee, EAM & Bingham, S (2000) Protein degradation in the large intestine: relevance to colorectal cancer. Curr Issues Intest Microbiol 1, 5158.
32 Matsui, T, Matsukawa, Y, Sakai, T, Nakamura, K, Aoike, A & Kawai, K (1995) Effect of ammonia on cell-cycle progression of human gastric-cancer cells. Eur J Gastroenterol Hepatol 7, S79S81.
33 Gibson, SAW, McFarlan, C, Hay, S & Macfarlane, GT (1989) Significance of microflora in proteolysis in the colon. Appl Environ Microb 55, 679683.
34 Stenutz, R, Weintraub, A & Widmalm, G (2006) The structures of Escherichia coli O-polysaccharide antigens. FEMS Microbiol Rev 30, 382403.
35 Li, C, Meng, X, Winnik, B, Lee, MJ, Lu, H, Sheng, S, Buckley, B & Yang, CS (2001) Analysis of urinary metabolites of tea catechins by liquid chromatography/electrospray ionization mass spectrometry. Chem Res Toxicol 14, 702707.
36 Meselhy, MR, Nakamura, N & Hattori, M (1997) Biotransformation of ( − )-epicatecbin 3-O-gallate by human intestinal bacteria. Chem Pharm Bull (Tokyo) 45, 888893.
37 Garsetti, M, Pellegrini, N, Baggio, C & Brighenti, F (2000) Antioxidant activity in human faeces. Br J Nutr 84, 705710.
38 Pearson, DC, Jourd'heuil, D & Meddings, JB (1996) The antioxidant properties of 5-aminosalicylic acid. Free Radic Biol Med 21, 367373.
39 Reimund, JM, Allison, AC, Muller, CD, Dumont, S, Kenney, JS, Baumann, R, Duclos, B & Poindron, P (1998) Antioxidants inhibit the in vitro production of inflammatory cytokines in Crohn's disease and ulcerative colitis. Eur J Clin Invest 28, 145150.

Keywords

Related content

Powered by UNSILO

Flavanol monomer-induced changes to the human faecal microflora

  • Xenofon Tzounis (a1), Jelena Vulevic (a2), Gunter G. C. Kuhnle (a3), Trevor George (a1), Jadwiga Leonczak (a4), Glenn R. Gibson (a2), Catherine Kwik-Uribe (a4) and Jeremy P. E. Spencer (a1)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.