Skip to main content
×
×
Home

Flax oil-mediated activation of PPAR-γ correlates with reduction of hepatic lipid accumulation in obese spontaneously hypertensive/NDmcr-cp rats, a model of the metabolic syndrome

  • Kanta Chechi (a1) (a2), Naomi Yasui (a1), Katsumi Ikeda (a1), Yukio Yamori (a3) and Sukhinder K. Cheema (a2)...
Abstract

Flax oil feeding has been proposed to have beneficial effects on the outcome of the metabolic syndrome due to the high n-3 fatty acid content of flax oil; however, the mechanisms of its action remain largely unknown. We investigated the effects of flax oil feeding on hyperlipidaemia, hyperglycaemia, hepatic steatosis and oxidative stress in the spontaneously hypertensive (SHR)/NDmcr-cp rats, a genetic model of the metabolic syndrome. Hepatic gene expression of PPAR-α, PPAR-γ and sterol-regulatory element-binding protein-1c was also assessed in order to investigate the possible underlying mechanisms. Obese and lean SHR/NDmcr-cp rats were fed high-fat diets enriched with either lard or flax oil for a period of 4 weeks. Obese rats exhibited higher body weight, liver weight and mesenteric fat-, epididymal fat- and renal fat-pad weights, and also TAG and cholesterol concentrations in serum and VLDL, LDL and HDL fractions, when compared with the lean rats (P < 0·001), irrespective of the diets. Concentrations of fasting serum insulin and urinary thiobarbituric acid reactive substances were lower in flax oil-fed obese (FO) rats compared with the lard-fed obese (LO) rats (P < 0·01). Flax oil feeding also revealed a significant reduction in hepatic TAG and cholesterol concentrations in obese rats compared with the LO rats (P < 0·05). In addition, FO rats exhibited significantly higher hepatic mRNA expression of PPAR-γ, which negatively correlated (r − 0·98, P < 0·05) with their hepatic lipid levels. These findings suggest that flax oil feeding may activate PPAR-γ-dependent pathways to alter the hepatic lipid metabolism and to increase insulin sensitivity in the obese SHR/NDmcr-cp rats.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Flax oil-mediated activation of PPAR-γ correlates with reduction of hepatic lipid accumulation in obese spontaneously hypertensive/NDmcr-cp rats, a model of the metabolic syndrome
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Flax oil-mediated activation of PPAR-γ correlates with reduction of hepatic lipid accumulation in obese spontaneously hypertensive/NDmcr-cp rats, a model of the metabolic syndrome
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Flax oil-mediated activation of PPAR-γ correlates with reduction of hepatic lipid accumulation in obese spontaneously hypertensive/NDmcr-cp rats, a model of the metabolic syndrome
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr S. K. Cheema, fax +1 709 737 2422, email skaur@mun.ca
References
Hide All
1 Bricker, L & Greydanus, D (2008) The metabolic syndrome: a gathering challenge in a time of abundance. Adolesc Med State Art Rev 19, 475497.
2 Renaud, S & de Lorgeril, M (1989) Dietary lipids and their relationship to ischemic heart disease: from epidemiology to prevention. J Intern Med 225, 18.
3 Artaud-Wild, S, Connor, S, Sexton, G, et al. (1993) Differences in coronary mortality can be explained by differences in cholesterol and saturated fat intakes in 40 countries but not in France and Finland. A paradox. Circulation 88, 27712779.
4 Keys, A (1997) Coronary heart disease in seven countries 1970. Nutrition 13, 250252.
5 Denke, MA (2006) Dietary fats, fatty acids, and their effects on lipoproteins. Curr Atheroscler Rep 8, 466471.
6 Dolecek, T (1992) Epidemiological evidence of relationships between dietary polyunsaturated fatty acids and mortality in the multiple risk factor intervention trial. Proc Soc Exp Biol Med 200, 177182.
7 Demaison, L & Moreau, D (2002) Dietary n-3 polyunsaturated fatty acids and coronary heart disease-related mortality: a possible mechanism of action. Cell Mol Life Sci 59, 463477.
8 Vemuri, M, Kelley, DS, Mackey, BE, et al. (2007) Docosahexaenoic acid (DHA) but not eicosapentaenoic acid (EPA) prevents trans-10, cis-12 conjugated linoleic acid (CLA)-induced insulin resistance in mice. Metab Syndr Relat Disord 5, 315322.
9 Davis, B & Kris-Etherton, P (2003) Achieving optimal essential fatty acids status in vegetarians: current knowledge and practical implications. Am J Clin Nutr 78, 640S646S.
10 Kelley, D, Branch, D & Love, J (1991) Dietary ALA and immunocompetence humans. Am J Clin Nutr 53, 4046.
11 Mantzioris, E, James, M, Gibson, R, et al. (1994) Dietary substitution with an ALA rich vegetable oil increases EPA concentrations in tissues. Am J Clin Nutr 59, 13041307.
12 Cunnane, S, Gangali, S, Menard, A, et al. (1993) High alpha-linolenic acid flaxseed (Linum usitatissimum). Some nutritional properties in humans. Br J Nutr 69, 443453.
13 Craig, W (1999) Health-promoting properties of common herbs. Am J Clin Nutr 70, 491499.
14 Murase, T, Aoki, M & Tokimitsu, I (2005) Supplementation with alpha-linolenic acid-rich diacylglycerol suppresses fatty liver formation accompanied by an up-regulation of beta-oxidation in zucker fatty rats. Biochim Biophys Acta 1733, 224231.
15 Cohen, SL, Moore, AM & Ward, WE (2005) Flaxseed oil and inflammation-associated bone abnormalities in interleukin-10 knockout mice. J Nutr Biochem 16, 368374.
16 Junko, Y, Ikeda, K & Yamori, Y (2005) Obese and hypertensive SHR/NDmcr-cp rats – a model of metabolic syndrome. Adiposcience 2, 243248.
17 Yasui, N, Hiraoka-Yamamoto, J, Kitamori, K, et al. (2007) Effects of dietary fibre on SHR/NDmcr-cp (fak/fak) rat, a model of metabolic syndrome. Clin Exp Pharmacol Physiol 34, S43S44.
18 Yamaguchi, Y, Yamada, K, Yoshikawa, N, et al. (2006) Corosolic acid prevents oxidative stress, inflammation and hypertension in SHR/NDmcr-cp rats, a model of metabolic syndrome. Life Sci 79, 24742479.
19 Keough, KM & Davis, PJ (1979) Gel to liquid-crystalline phase transitions in water dispersions of saturated mixed-acid phosphatidylcholines. Biochemistry 18, 14531459.
20 Usui, S, Hara, Y, Hosaki, S, et al. (2002) A new on-line dual enzymatic method for simultaneous quantification of cholesterol and triglycerides in lipoproteins by HPLC. J Lipid Res 43, 805814.
21 Folch, J, Lees, M & Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497509.
22 Chan, J, Bruce, V & McDonald, B (1991) Dietary alpha linolenic acid is as effective as oleic acid and linolenic acid in lowering blood cholesterol in normolipidemic men. J Am Coll Nutr 53, 12301235.
23 Ghafoorunissa, , Ibrahim, A & Natarajan, S (2005) Substituting dietary linoleic acid with alpha-linolenic acid improves insulin sensitivity in sucrose fed rats. Biochim Biophys Acta 1733, 6775.
24 Kotronen, A, Westerbacka, J, Bergholm, R, et al. (2007) Liver fat in the metabolic syndrome. J Clin Endocrinol Metab 92, 34903497.
25 Gan, SK, Adams, LA & Watts, GF (2008) The trials and tribulations of the treatment of nonalcoholic fatty-liver disease. Curr Opin Lipidol 19, 592599.
26 Chitturi, S, Abeygunasekera, S, Farrell, G, et al. (2002) NASH and insulin resistance: insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology 35, 373379.
27 Browning, J & Horton, J (2004) Molecular mediators of hepatic steatosis and liver injury. J Clin Invest 114, 147152.
28 Ozcan, U, Cao, Q, Yilmaz, E, et al. (2004) Endoplasmic reticulum stress links obesity, insulin action, and type 2 diabetes. Science 306, 457461.
29 Morise, A, Mourot, J, Riottot, M, et al. (2005) Dose effect of alpha-linolenic acid on lipid metabolism in the hamster. Reprod Nutr Dev 45, 405418.
30 Morise, A, Mourot, J, Boué, C, et al. (2006) Gender-related response of lipid metabolism to dietary fatty acids in the hamster. Br J Nutr 95, 709720.
31 Vijaimohan, K, Jainu, M, Sabitha, KE, et al. (2006) Beneficial effects of alpha linolenic acid rich flaxseed oil on growth performance and hepatic cholesterol metabolism in high fat diet fed rats. Life Sci 79, 448454.
32 Ide, T, Kobayashi, H, Ashakumary, L, et al. (2000) Comparative effects of perilla and fish oils on the activity and gene expression of fatty acid oxidation enzymes in rat liver. Biochim Biophys Acta 1485, 2335.
33 Osborne, TF (2000) Sterol regulatory element-binding proteins (SREBPs): key regulators of nutritional homeostasis and insulin action. J Biol Chem 275, 3237932382.
34 Fukumitsu, S, Aida, K, Ueno, N, et al. (2008) Flaxseed lignan attenuates high-fat diet-induced fat accumulation and induces adiponectin expression in mice. Br J Nutr 100, 669676.
35 Braissant, O, Foufelle, F, Scotto, C, et al. (1996) Differential expression of peroxisome proliferator-activated receptors (PPARs): tissue distribution of PPAR-alpha, beta, and -gamma in the adult rat. Endocrinology 137, 354366.
36 Shalev, A, Siegrist-Kaiser, C, Yen, P, et al. (1996) The peroxisome proliferator-activated receptor alpha is a phosphoprotein: regulation by insulin. Endocrinology 137, 44994502.
37 Vidal-Puig, A, Jimenez-Liñan, M, Lowell, B, et al. (1996) Regulation of PPAR-gamma gene expression by nutrition and obesity in rodents. J Clin Invest 97, 25532561.
38 Burant, C, Sreenan, S, Hirano, K, et al. (1997) Troglitazone action is independent of adipose tissue. J Clin Invest 100, 29002908.
39 Edvardsson, U, Bergstrom, M, Alexandersson, M, et al. (1999) Rosiglitazone (BRL49653), a PPAR gamma-selective agonist, causes peroxisome proliferator-like liver effects in obese mice. J Lipid Res 40, 11771184.
40 Bedoucha, M, Atzpodien, E & Boelsterli, UA (2001) Diabetic KKAy mice exhibit increased hepatic PPARgamma1 gene expression and develop hepatic steatosis upon chronic treatment with antidiabetic thiazolidinediones. J Hepatol 35, 1723.
41 Rahimian, R, MasihKhan, E, Lo, M, et al. (2001) Hepatic over-expression of peroxisome proliferator activated receptor gamma-2 in the ob/ob mouse model of non-insulin dependent diabetes mellitus. Mol Cell Biochem 224, 2937.
42 Memon, RA, Tecott, LH, Nonogaki, K, et al. (2000) Up-regulation of peroxisome proliferator-activated receptors (PPAR-alpha) and PPAR-gamma messenger ribonucleic acid expression in the liver in murine obesity: troglitazone induces expression of PPAR-gamma-responsive adipose tissue-specific genes in the liver of obese diabetic mice. Endocrinology 141, 40214031.
43 Yan, W, Dou, J, Pan, C, et al. (2008) Candesartan improves insulin resistance induced by high-fat diet in rats. Zhonghua Yi Xue Za Zhi 88, 26952699.
44 Kelley, DS, Vemuri, M, Adkins, Y, et al. (2009) Flaxseed oil prevents trans-10, cis-12-conjugated linoleic acid-induced insulin resistance in mice. Br J Nutr 101, 701708.
45 Schwab, US, Callaway, JC, Erkkilä, AT, et al. (2006) Effects of hempseed and flaxseed oils on the profile of serum lipids, serum total and lipoprotein lipid concentrations and haemostatic factors. Eur J Nutr 45, 470477.
46 Kaul, N, Kreml, R, Austria, JA, et al. (2008) A comparison of fish oil, flaxseed oil and hempseed oil supplementation on selected parameters of cardiovascular health in healthy volunteers. J Am Coll Nutr 27, 5158.
47 Lee, P & Prasad, K (2003) Effects of flaxseed oil on serum lipids and atherosclerosis in hypercholesterolemic rabbits. J Cardiovasc Pharmacol Ther 8, 227235.
48 Edralin, AL, Robert, DW, Lisa, JH, et al. (2002) Flaxseed improves lipid profile without altering biomarkers of bone metabolism in postmenopausal women. J Clin Endocrinol Metab 87, 15271532.
49 Felmlee, MA, Woo, G, Simko, E, et al. (2009) Effects of the flaxseed lignans secoisolariciresinol diglucoside and its aglycone on serum and hepatic lipids in hyperlipidaemic rats. Br J Nutr 102, 361369.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed