Skip to main content Accessibility help
×
×
Home

Formononetin, a methoxy isoflavone, enhances bone regeneration in a mouse model of cortical bone defect

  • Krishna Bhan Singh (a1), Manisha Dixit (a1), Kapil Dev (a2), Rakesh Maurya (a2) and Divya Singh (a1)...

Abstract

The bone regeneration and healing effect of formononetin was evaluated in a cortical bone defect model that predominantly heals by intramembranous ossification. For this study, female Balb/c mice were ovariectomised (OVx) and a drill-hole injury was generated in the midfemoral bones of all animals. Treatment with formononetin commenced the day after and continued for 21 d. Parathyroid hormone (PTH1–34) was used as a reference standard. Animals were killed at days 10 and 21. Femur bones were collected at the injury site for histomorphometry studies using microcomputed tomography (μCT) and confocal microscopy. RNA and protein were harvested from the region surrounding the drill-hole injury. For immunohistochemistry, 5 µm sections of decalcified femur bone adjoining the drill-hole site were cut. μCT analysis showed that formononetin promoted bone healing at days 10 and 21 and the healing effect observed was significantly better than in Ovx mice and equal to PTH treatment in many aspects. Formononetin also significantly enhanced bone regeneration as assessed by calcein-labelling studies. In addition, formononetin enhanced the expression of osteogenic markers at the injury site in a manner similar to PTH. Formononetin treatment also led to predominant runt-related transcription factor 2 and osteocalcin localisation at the injury site. These results support the potential of formononetin to be a bone-healing agent and are suggestive of its promising role in the fracture-repair process.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Formononetin, a methoxy isoflavone, enhances bone regeneration in a mouse model of cortical bone defect
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Formononetin, a methoxy isoflavone, enhances bone regeneration in a mouse model of cortical bone defect
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Formononetin, a methoxy isoflavone, enhances bone regeneration in a mouse model of cortical bone defect
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: D. Singh, fax +91 522 2771940, email divya_singh@cdri.res.in

References

Hide All
1. Claes, L, Recknagel, S & Ignatius, A (2012) Fracture healing under healthy and inflammatory conditions. Nat Rev Rheumatol 8, 133143.
2. Ginaldi, L, Di Benedetto, MC & De Martinis, M (2005) Osteoporosis, inflammation and ageing. Immun Ageing 2, 14.
3. Zara, JN, Siu, RK, Zhang, X, et al. (2011) High doses of bone morphogenetic protein 2 induce structurally abnormal bone and inflammation in vivo . Tissue Eng Part A 17, 13891399.
4. Kakar, S, Einhorn, TA, Vora, S, et al. (2007) Enhanced chondrogenesis and Wnt signaling in PTH-treated fractures. J Bone Miner Res 22, 19031912.
5. Barnes, GL, Kakar, S, Vora, S, et al. (2008) Stimulation of fracture-healing with systemic intermittent parathyroid hormone treatment. J Bone Joint Surg Am 90, Suppl. 1, 120127.
6. Warden, SJ, Komatsu, DE, Rydberg, J, et al. (2009) Recombinant human parathyroid hormone (PTH 1-34) and low-intensity pulsed ultrasound have contrasting additive effects during fracture healing. Bone 44, 485494.
7. Sikon, A & Batur, P (2010) Profile of teriparatide in the management of postmenopausal osteoporosis. Int J Womens Health 2, 3744.
8. Pietrogrande, L (2009) Update on the efficacy, safety, and adherence to treatment of full length parathyroid hormone, PTH (1-84), in the treatment of postmenopausal osteoporosis. Int J Womens Health 1, 193203.
9. Pandey, R, Gautam, AK, Bhargavan, B, et al. (2010) Total extract and standardized fraction from the stem bark of Butea monosperma have osteoprotective action: evidence for the nonestrogenic osteogenic effect of the standardized fraction. Menopause 17, 602610.
10. Maurya, R, Yadav, DK, Singh, G, et al. (2009) Osteogenic activity of constituents from Butea monosperma . Bioorg Med Chem Lett 19, 610613.
11. Medjakovic, S & Jungbauer, A (2008) Red clover isoflavones biochanin A and formononetin are potent ligands of the human aryl hydrocarbon receptor. J Steroid Biochem Mol Biol 108, 171177.
12. Saviranta, NM, Julkunen-Tiitto, R, Oksanen, E, et al. (2010) Red clover (Trifolium pratense L.) isoflavones: root phenolic compounds affected by biotic and abiotic stress factors. J Sci Food Agric 90, 418423.
13. Idris, AI, Sophocleous, A, Landao-Bassonga, E, et al. (2008) Regulation of bone mass, osteoclast function, and ovariectomy-induced bone loss by the type 2 cannabinoid receptor. Endocrinology 149, 56195626.
14. Tyagi, AM, Srivastava, K, Singh, AK, et al. (2012) Formononetin reverses established osteopenia in adult ovariectomized rats. Menopause 19, 856863.
15. Gautam, AK, Bhargavan, B, Tyagi, AM, et al. (2011) Differential effects of formononetin and cladrin on osteoblast function, peak bone mass achievement and bioavailability in rats. J Nutr Biochem 22, 318327.
16. Sophocleous, A & Idris, AI (2014) Rodent models of osteoporosis. Bonekey Rep 3, 614.
17. Dixit, M, Singh, KB, Prakash, R, et al. (2017) Functional block of IL-17 cytokine promotes bone healing by augmenting FOXO1 and ATF4 activity in cortical bone defect model. Osteoporos Int 28, 22072220.
18. Huang, W, Yang, S, Shao, J, et al. (2007) Signaling and transcriptional regulation in osteoblast commitment and differentiation. Front Biosci 12, 30683092.
19. Dixit, M, Raghuvanshi, A, Gupta, CP, et al. (2015) Medicarpin, a natural pterocarpan, heals cortical bone defect by activation of notch and wnt canonical signaling pathways. PLOS ONE 10, e0144541.
20. Sharan, K, Mishra, JS, Swarnkar, G, et al. (2011) A novel quercetin analogue from a medicinal plant promotes peak bone mass achievement and bone healing after injury and exerts an anabolic effect on osteoporotic bone: the role of aryl hydrocarbon receptor as a mediator of osteogenic action. J Bone Miner Res 26, 20962111.
21. Tyagi, AM, Mansoori, MN, Srivastava, K, et al. (2014) Enhanced immunoprotective effects by anti-IL-17 antibody translates to improved skeletal parameters under estrogen deficiency compared with anti-RANKL and anti-TNF-alpha antibodies. J Bone Miner Res 29, 19811992.
22. Holzer, G, Majeska, RJ, Lundy, MW, et al. (1999) Parathyroid hormone enhances fracture healing. A preliminary report. Clin Orthop Relat Res, 258263.
23. Shapiro, F (2008) Bone development and its relation to fracture repair. The role of mesenchymal osteoblasts and surface osteoblasts. Eur Cell Mater 15, 5376.
24. Li, C, Li, G, Gao, Y, et al. (2016) A 90-day subchronic toxicity study with sodium formononetin-3’-sulphonate (Sul-F) delivered to dogs via intravenous administration. Regul Toxicol Pharmacol 77, 8792.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Singh supplementary material
Singh supplementary material 1

 Unknown (1.1 MB)
1.1 MB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed