Skip to main content Accessibility help

Fruit polyphenols and CVD risk: a review of human intervention studies

  • Mary F.-F. Chong (a1), Rory Macdonald (a1) and Julie A. Lovegrove (a1)

Epidemiological evidence suggests that polyphenols may, in part, explain the cardioprotective properties of fruits. This review aims to summarise the evidence for the effects of fruit polyphenols on four risk factors of CVD: platelet function, blood pressure, vascular function and blood lipids. This review includes human dietary intervention studies investigating fruits and their polyphenols. There was some evidence to suggest that fruits containing relatively high concentrations of flavonols, anthocyanins and procyanindins, such as pomegranate, purple grapes and berries, were effective at reducing CVD risk factors, particularly with respect to anti-hypertensive effects, inhibition of platelet aggregation and increasing endothelial-dependent vasodilation than other fruits investigated. Flavanone-rich fruits, such as oranges and grapefruits, were reported to have hypocholesterolaemic effects, with little impact on other risk factors being examined. However, the evidence was limited, inconsistent and often inconclusive. This is in part due to the heterogeneity in the design of studies, the lack of controls, the relatively short intervention periods and low power in several studies. Details of the polyphenol content of the fruits investigated were also omitted in some studies, negating comparison of data. It is recommended that large, well-powered, long-term human dietary intervention studies investigating a wider range of fruits are required to confirm these observations. Investigations into the potential synergistic effects of polyphenols on a combination of CVD risk markers, dose–response relationships and standardisation in methodology would facilitate the comparison of studies and also provide valuable information on the types of fruits which could confer protection against CVD.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Fruit polyphenols and CVD risk: a review of human intervention studies
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Fruit polyphenols and CVD risk: a review of human intervention studies
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Fruit polyphenols and CVD risk: a review of human intervention studies
      Available formats
Corresponding author
*Corresponding author: Professor J. A. Lovegrove, fax +44 0118 931 0080, email
Hide All
1 Allender, S, Scarborough, P, Peto, V, et al. (2008) European Cardiovascular Disease Statistics 2008, 3rd ed. London: European Heart Network.
2 Joshipura, KJ, Hu, FB, Manson, JE, et al. (2001) The effect of fruit and vegetable intake on risk for coronary heart disease. Ann Intern Med 134, 11061114.
3 Dauchet, L, Amouyel, P & Dallongeville, J (2009) Fruits, vegetables and coronary heart disease. Nat Rev Cardiol 6, 599608.
4 Scalbert, A, Johnson, IT & Saltmarsh, M (2005) Polyphenols: antioxidants and beyond. Am J Clin Nutr 81, Suppl. 1, 215S217S.
5 Arts, IC & Hollman, PC (2005) Polyphenols and disease risk in epidemiologic studies. Am J Clin Nutr 81, Suppl. 1, 317S325S.
6 Hertog, MG, Feskens, EJ, Hollman, PC, et al. (1993) Dietary antioxidant flavonoids and risk of coronary heart disease: the Zutphen Elderly Study. Lancet 342, 10071011.
7 Mink, PJ, Scrafford, CG, Barraj, LM, et al. (2007) Flavonoid intake and cardiovascular disease mortality: a prospective study in postmenopausal women. Am J Clin Nutr 85, 895909.
8 Williamson, G & Manach, C (2005) Bioavailability and bioefficacy of polyphenols in humans. II. Review of 93 intervention studies. Am J Clin Nutr 81, Suppl. 1, 243S255S.
9 Grassi, D, Desideri, G, Croce, G, et al. (2009) Flavonoids, vascular function and cardiovascular protection. Curr Pharm Des 15, 10721084.
10 Beecher, GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133, 3248S3254S.
11 Lusis, AJ (2000) Atherosclerosis. Nature 407, 233241.
12 Ross, R (1999) Atherosclerosis – an inflammatory disease. N Engl J Med 340, 115126.
13 Ezzati, M, Lopez, AD, Rodgers, A, et al. (2002) Selected major risk factors and global and regional burden of disease. Lancet 360, 13471360.
14 Williams, B, Poulter, NR, Brown, MJ, et al. (2004) Guidelines for management of hypertension: report of the fourth working party of the British Hypertension Society, 2004-BHS IV. J Hum Hypertens 18, 139185.
15 Collins, R, Peto, R, MacMahon, S, et al. (1990) Blood pressure, stroke, and coronary heart disease. Part 2: short-term reductions in blood pressure: overview of randomised drug trials in their epidemiological context. Lancet 335, 827838.
16 Whelton, PK, He, J, Appel, LJ, et al. (2002) Primary prevention of hypertension: clinical and public health advisory from The National High Blood Pressure Education Program. JAMA 288, 18821888.
17 Aviram, M (2007) Hyperlipidaemia and cardiovascular disease. Curr Opin Lipidol 18, 473475.
18 Yusuf, S, Hawken, S, Ounpuu, S, et al. (2004) Effect of potentially modifiable risk factors associated with myocardial infarction in 52 countries (the INTERHEART study): case–control study. Lancet 364, 937952.
19 Vita, JA & Keaney, JF Jr (2002) Endothelial function: a barometer for cardiovascular risk? Circulation 106, 640642.
20 Halcox, JP, Donald, AE, Ellins, E, et al. (2009) Endothelial function predicts progression of carotid intima–media thickness. Circulation 119, 10051012.
21 Vita, JA (2005) Polyphenols and cardiovascular disease: effects on endothelial and platelet function. Am J Clin Nutr 81, Suppl. 1, 292S297S.
22 Dangour, AD, Dodhia, SK, Hayter, A, et al. (2009) Nutritional quality of organic foods: a systematic review. Am J Clin Nutr 90, 680685.
23 Mukamal, KJ & Rimm, EB (2001) Alcohol's effects on the risk for coronary heart disease. Alcohol Res Health 25, 255261.
24 Leifert, WR & Abeywardena, MY (2008) Cardioprotective actions of grape polyphenols. Nutr Res 28, 729737.
25 Freedman, JE, Parker, C 3rd, Li, L, et al. (2001) Select flavonoids and whole juice from purple grapes inhibit platelet function and enhance nitric oxide release. Circulation 103, 27922798.
26 Keevil, JG, Osman, HE, Reed, JD, et al. (2000) Grape juice, but not orange juice or grapefruit juice, inhibits human platelet aggregation. J Nutr 130, 5356.
27 Aviram, M, Dornfeld, L, Rosenblat, M, et al. (2000) Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr 71, 10621076.
28 Polagruto, JA, Gross, HB, Kamangar, F, et al. (2007) Platelet reactivity in male smokers following the acute consumption of a flavanol-rich grapeseed extract. J Med Food 10, 725730.
29 Erlund, I, Koli, R, Alfthan, G, et al. (2008) Favorable effects of berry consumption on platelet function, blood pressure, and HDL cholesterol. Am J Clin Nutr 87, 323331.
30 Eccleston, C, Baoru, Y, Tahvonen, R, et al. (2002) Effects of an antioxidant-rich juice (sea buckthorn) on risk factors for coronary heart disease in humans. J Nutr Biochem 13, 346354.
31 Conquer, JA, Maiani, G, Azzini, E, et al. (1998) Supplementation with quercetin markedly increases plasma quercetin concentration without effect on selected risk factors for heart disease in healthy subjects. J Nutr 128, 593597.
32 Janssen, K, Mensink, RP, Cox, FJ, et al. (1998) Effects of the flavonoids quercetin and apigenin on hemostasis in healthy volunteers: results from an in vitro and a dietary supplement study. Am J Clin Nutr 67, 255262.
33 Rechner, AR & Kroner, C (2005) Anthocyanins and colonic metabolites of dietary polyphenols inhibit platelet function. Thromb Res 116, 327334.
34 Shanmuganayagam, D, Beahm, MR, Osman, HE, et al. (2002) Grape seed and grape skin extracts elicit a greater antiplatelet effect when used in combination than when used individually in dogs and humans. J Nutr 132, 35923598.
35 Landolfi, R, Mower, RL & Steiner, M (1984) Modification of platelet function and arachidonic acid metabolism by bioflavonoids. Structure–activity relations. Biochem Pharmacol 33, 15251530.
36 Pace-Asciak, CR, Rounova, O, Hahn, SE, et al. (1996) Wines and grape juices as modulators of platelet aggregation in healthy subjects. Clin Chim Acta 246, 163182.
37 Freese, R, Vaarala, O, Turpeinen, AM, et al. (2004) No difference in platelet activation or inflammation markers after diets rich or poor in vegetables, berries and apple in healthy subjects. Eur J Nutr 43, 175182.
38 Hubbard, GP, Wolffram, S, Lovegrove, JA, et al. (2004) Ingestion of quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in humans. J Thromb Haemost 2, 21382145.
39 Hubbard, GP, Wolffram, S, de Vos, R, et al. (2006) Ingestion of onion soup high in quercetin inhibits platelet aggregation and essential components of the collagen-stimulated platelet activation pathway in man: a pilot study. Br J Nutr 96, 482488.
40 Huang, HY, Huang, JJ, Tso, TK, et al. (2004) Antioxidant and angiotension-converting enzyme inhibition capacities of various parts of Benincasa hispida (wax gourd). Nahrung 48, 230233.
41 Moline, J, Bukharovich, IF, Wolff, MS, et al. (2000) Dietary flavonoids and hypertension: is there a link? Med Hypotheses 55, 306309.
42 Mennen, LI, Sapinho, D, de Bree, A, et al. (2004) Consumption of foods rich in flavonoids is related to a decreased cardiovascular risk in apparently healthy French women. J Nutr 134, 923926.
43 Gorinstein, S, Caspi, A, Libman, I, et al. (2006) Red grapefruit positively influences serum triglyceride level in patients suffering from coronary atherosclerosis: studies in vitro and in humans. J Agric Food Chem 54, 18871892.
44 Naruszewicz, M, Laniewska, I, Millo, B, et al. (2007) Combination therapy of statin with flavonoids rich extract from chokeberry fruits enhanced reduction in cardiovascular risk markers in patients after myocardial infraction (MI). Atherosclerosis 194, e179e184.
45 Wilson, T, Singh, AP, Vorsa, N, et al. (2008) Human glycemic response and phenolic content of unsweetened cranberry juice. J Med Food 11, 4654.
46 Borochov-Neori, H, Judeinstein, S, Greenberg, A, et al. (2008) Phenolic antioxidants and antiatherogenic effects of Marula (Sclerocarrya birrea Subsp. caffra) fruit juice in healthy humans. J Agric Food Chem 56, 98849891.
47 Ruel, G, Pomerleau, S, Couture, P, et al. (2005) Changes in plasma antioxidant capacity and oxidized low-density lipoprotein levels in men after short-term cranberry juice consumption. Metabolism 54, 856861.
48 Oszmianski, J & Wojdylo, A (2005) Aronia melanocarpa phenolics and their antioxidant activity. Eur Food Res Technol 221, 809813.
49 Brown, AA & Hu, FB (2001) Dietary modulation of endothelial function: implications for cardiovascular disease. Am J Clin Nutr 73, 673686.
50 Sattar, N & Ferns, G (2005) Endothelial dysfunction. In Cardiovascular Disease: Diet Nutrition and Emerging Risk Factors, pp. 6377 [Stanner, S, editor]. Oxford: Blackwell Science.
51 Stein, JH, Keevil, JG, Wiebe, DA, et al. (1999) Purple grape juice improves endothelial function and reduces the susceptibility of LDL cholesterol to oxidation in patients with coronary artery disease. Circulation 100, 10501055.
52 Davidson, MH, Maki, KC, Dicklin, MR, et al. (2009) Effects of consumption of pomegranate juice on carotid intima–media thickness in men and women at moderate risk for coronary heart disease. Am J Cardiol 104, 936942.
53 Aviram, M, Rosenblat, M, Gaitini, D, et al. (2004) Pomegranate juice consumption for 3 years by patients with carotid artery stenosis reduces common carotid intima–media thickness, blood pressure and LDL oxidation. Clin Nutr 23, 423433.
54 Chou, EJ, Keevil, JG, Aeschlimann, S, et al. (2001) Effect of ingestion of purple grape juice on endothelial function in patients with coronary heart disease. Am J Cardiol 88, 553555.
55 Clifton, PM (2004) Effect of grape seed extract and quercetin on cardiovascular and endothelial parameters in high-risk subjects. J Biomed Biotechnol 2004, 272278.
56 Koga, T & Meydani, M (2001) Effect of plasma metabolites of (+)-catechin and quercetin on monocyte adhesion to human aortic endothelial cells. Am J Clin Nutr 73, 941948.
57 Yamakoshi, J, Kataoka, S, Koga, T, et al. (1999) Proanthocyanidin-rich extract from grape seeds attenuates the development of aortic atherosclerosis in cholesterol-fed rabbits. Atherosclerosis 142, 139149.
58 Stoclet, JC, Chataigneau, T, Ndiaye, M, et al. (2004) Vascular protection by dietary polyphenols. Eur J Pharmacol 500, 299313.
59 Serraino, I, Dugo, L, Dugo, P, et al. (2003) Protective effects of cyanidin-3-O-glucoside from blackberry extract against peroxynitrite-induced endothelial dysfunction and vascular failure. Life Sci 73, 10971114.
60 Youdim, KA, Martin, A & Joseph, JA (2000) Incorporation of the elderberry anthocyanins by endothelial cells increases protection against oxidative stress. Free Radic Biol Med 29, 5160.
61 Sumner, MD, Elliott-Eller, M, Weidner, G, et al. (2005) Effects of pomegranate juice consumption on myocardial perfusion in patients with coronary heart disease. Am J Cardiol 96, 810814.
62 Franke, AA, Cooney, RV, Henning, SM, et al. (2005) Bioavailability and antioxidant effects of orange juice components in humans. J Agric Food Chem 53, 51705178.
63 Kurowska, EM, Spence, JD, Jordan, J, et al. (2000) HDL-cholesterol-raising effect of orange juice in subjects with hypercholesterolemia. Am J Clin Nutr 72, 10951100.
64 Duthie, SJ, Jenkinson, AM, Crozier, A, et al. (2006) The effects of cranberry juice consumption on antioxidant status and biomarkers relating to heart disease and cancer in healthy human volunteers. Eur J Nutr 45, 113122.
65 George, TW, Niwat, C, Waroonphan, S, et al. (2009) Effects of chronic and acute consumption of fruit- and vegetable-puree-based drinks on vasodilation, risk factors for CVD and the response as a result of the eNOS G298T polymorphism. Proc Nutr Soc 68, 148161.
66 Aviram, M & Dornfeld, L (2001) Pomegranate juice consumption inhibits serum angiotensin converting enzyme activity and reduces systolic blood pressure. Atherosclerosis 158, 195198.
67 Clifford, MN (2004) Diet-derived phenols in plasma and tissues and their implications for health. Planta Med 70, 11031114.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Chong supplementary material
Chong supplementary material

 Word (31 KB)
31 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed