Skip to main content Accessibility help
×
Home
Hostname: page-component-55597f9d44-n4bck Total loading time: 0.291 Render date: 2022-08-12T11:21:22.866Z Has data issue: true Feature Flags: { "shouldUseShareProductTool": true, "shouldUseHypothesis": true, "isUnsiloEnabled": true, "useRatesEcommerce": false, "useNewApi": true } hasContentIssue true

Generalized equations for predicting body density of men

Published online by Cambridge University Press:  09 March 2007

A. S. Jackson
Affiliation:
Wake Forest University, Winston-Salem, North Carolina and Institute of Aerobics Research, Dallas, Texas, USA
M. L. Pollock
Affiliation:
Wake Forest University, Winston-Salem, North Carolina and Institute of Aerobics Research, Dallas, Texas, USA
Rights & Permissions[Opens in a new window]

Abstract

HTML view is not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Skinfold thickness, body circumferences and body density were measured in samples of 308 and ninety-five adult men ranging in age from 18 to 61 years.

2. Using the sample of 308 men, multiple regression equations were calculated to estimate body density using either the quadratic or log form of the sum of skinfolds, in combination with age, waist and forearm circumference.

3. The multiple correlations for the equations exceeded 0.90 with standard errors of approximately ±0.0073 g/ml.

4. The regression equations were cross validated on the second sample of ninety-five men. The correlations between predicted and laboratory-determined body density exceeded 0.90 with standard errors of approximately 0.0077 g/ml.

5. The regression equations were shown to be valid for adult men varying in age and fatness.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Allen, T. H., Peng, M. T., Chen, K. P., Huang, T. F., Chang, C. & Fang, H. S. (1956). Metabolism 5, 346.Google Scholar
Behnke, A. R. & Wilmore, J. H. (1974). Evaluation and Regulation of Body Build and Composition. Engle-wood Cliffs: Prentice-Hall.Google Scholar
Brožek, J., Grande, F., Anderson, J. T. & Keys, A. (1963). Ann. N. Y. Acad. Sci. 110, 113.CrossRefGoogle Scholar
Brožek, J. & Keys, A. (1951). Br. J. Nutr. 5, 194.CrossRefGoogle Scholar
Chen, S., Peng, M. T., Chen, K. P., Huang, T. F., Chang, C. & Fang, H. S. (1975). J. appl. Physiol. 39, 825.CrossRefGoogle Scholar
Durnin, J. V. G. A. & Rahaman, M. M. (1967). Br. J. Nutr. 21, 681.CrossRefGoogle Scholar
Goldman, R. F. & Buskirk, E. R. (1961). In Techniques for Measuring Body Composition, p. 78 [Brožek, J. and Henschels, A., editors]. Washington, DC: National Academy of Science.Google Scholar
Jackson, A. S. & Pollock, M. L. (1976). Med. Sci. Sports 8, 196.Google Scholar
Katch, F. I. (1968). Research Quarterly 39, 993.Google Scholar
Katch, F. I. & McArdle, W. D. (1973). Human Biol. 45, 445.Google Scholar
Kerlinger, F. N. & Pedhazur, E. S. (1973). Multiple Regression in Behavioral Research. New York: Holt, Rinehart and Winston.Google Scholar
Keys, A. (1956) Human Biol. 28, 111.Google Scholar
Lord, F. M. & Novick, M. R. (1968). Statistical Theories of Mental Test Scores, pp. 285288. Reading, Mass.: Addison-Wesley.Google Scholar
Pascale, L. R., Grossman, M. I., Sloane, H. S. & Frankel, T. (1956). Human Biol. 28, 165.Google Scholar
Pollock, M. L., Hickman, T., Kendrick, Z., Jackson, A. S., Linnerud, A. C. & Dawson, G. (1976). J. appl. Physiol. 40, 300.CrossRefGoogle Scholar
Pollock, M. L., Jackson, A. S., Ayres, J., Ward, A., Linnerud, A. & Gettman, L. (1976). Ann. N.Y. Acad. Sci. 301, 361.CrossRefGoogle Scholar
Siri, W. E. (1961). In Techniques for Measuring Body Composition, p. 223 [Brožek, J. and Hanschels, A., editors]. Washington DC: National Academy of Science.Google Scholar
Sloan, A. W. (1967). J. appl. Physiol. 23, 311.CrossRefGoogle Scholar
Wilmore, J. H. & Behnke, A. R. (1969). J. appl. Physiol. 27, 25.CrossRefGoogle Scholar
Wright, H. F. & Wilmore, J. H. (1974). Aerospace Med. 45, 301.Google Scholar
You have Access
1588
Cited by

Save article to Kindle

To save this article to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Generalized equations for predicting body density of men
Available formats
×

Save article to Dropbox

To save this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about saving content to Dropbox.

Generalized equations for predicting body density of men
Available formats
×

Save article to Google Drive

To save this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you used this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about saving content to Google Drive.

Generalized equations for predicting body density of men
Available formats
×
×

Reply to: Submit a response

Please enter your response.

Your details

Please enter a valid email address.

Conflicting interests

Do you have any conflicting interests? *