Skip to main content Accesibility Help
×
×
Home

High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise

  • Roy L. P. G. Jentjens (a1) and Asker E. Jeukendrup (a1)
Abstract

A recent study from our laboratory has shown that a mixture of glucose and fructose ingested at a rate of 1·8 g/min leads to peak oxidation rates of approximately 1·3 g/min and results in approximately 55 % higher exogenous carbohydrate (CHO) oxidation rates compared with the ingestion of an isocaloric amount of glucose. The aim of the present study was to investigate whether a mixture of glucose and fructose when ingested at a high rate (2·4 g/min) would lead to even higher exogenous CHO oxidation rates (>1·3 g/min).Eight trained male cyclists (VO2max: 68±1 ml/kg per min) cycled on three different occasions for 150 min at 50 % of maximal power output (60±1 % VO2max) and consumed either water (WAT) or a CHO solution providing 1·2 g/min glucose (GLU) or 1.2 g/min glucose+1·2 g/min fructose (GLU+FRUC). Peak exogenous CHO oxidation rates were higher (P<0·01) in the GLU+FRUC trial compared with the GLU trial (1·75 (se 0·11) and 1·06 (se 0·05) g/min, respectively). Furthermore, exogenous CHO oxidation rates during the last 90 min of exercise were approximately 50 % higher (P<0·05) in GLU+FRUC compared with GLU (1·49 (se 0·08) and 0·99 (se 0·06) g/min, respectively). The results demonstrate that when a mixture of glucose and fructose is ingested at high rates (2·4 g/min) during 150 min of cycling exercise, exogenous CHO oxidation rates reach peak values of approximately 1·75 g/min.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High rates of exogenous carbohydrate oxidation from a mixture of glucose and fructose ingested during prolonged cycling exercise
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr Asker E. Jeukendrup, fax +44 (0)121 414 4121, email A.E.Jeukendrup@bham.ac.uk
References
Hide All
Adopo, E, Peronnet, F, Massicotte, D, Brisson, GR & Hillaire-Marcel, C (1994) Respective oxidation of exogenous glucose and fructose given in the same drink during exercise. J Appl Physiol 76, 10141019.
Bjorkman, O, Crump, M & Phillips, RW (1984) Intestinal metabolism of orally administered glucose and fructose in Yucatan miniature swine. J Nutr 114, 14131420.
Bjorkman, O, Eriksson, LS, Nyberg, B & Wahren, J (1990) Gut exchange of glucose and lactate in basal state and after oral glucose ingestion in postoperative patients. Diabetes 39, 747751.
Borg, G (1982) Ratings of perceived exertion and heart rates during short-term cycle exercise and their use in a new cycling strength test. Int J Sports Med 3, 153158.
Bosch, AN, Dennis, SC & Noakes, TD (1994) Influence of carbohydrate ingestion on fuel substrate turnover and oxidation during prolonged exercise. J Appl Physiol 76, 23642372.
Burant, CF, Takeda, J, Brot-Laroche, E, Bell, GL & Davidson, NO (1992) Fructose transporter in human spermatozoa and small intestine is GLUT5. J Biol Chem 267, 1452314526.
Coggan, AR & Coyle, EF (1987) Reversal of fatigue during prolonged exercise by carbohydrate infusion or ingestion. J Appl Physiol 63, 23882395.
Corpe, CP, Burant, CF & Hoekstra, JH (1999) Intestinal fructose absorption: clinical and molecular aspects. J Pediatr Gastroenterol Nutr 28, 364374.
Coyle, EF, Coggan, AR, Hemmert, MK & Ivy, JL (1986) Muscle glycogen utilization during prolonged strenuous exercise when fed carbohydrate. J Appl Physiol 61, 165172.
Craig, H (1957) Isotopic standards for carbon and oxygen and correction factors. Geochim Cosmochim Acta 12, 133149.
Davidson, RE & Leese, HJ (1977) Sucrose absorption by the rat small intestine in vivo and in vitro. J Physiol 267, 237248.
Ferraris, RP & Diamond, J (1997) Regulation of intestinal sugar transport. Physiol Rev 77, 257302.
Fine, KD, Santa, Ana CA, Porter, JL & Fordtran, JS (1994) Mechanism by which glucose stimulates the passive absorption of small solutes by the human jejunum in vivo. Gastroenterology 107, 389395.
Frayn, KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol 55, 628634.
Fujisawa, T, Mulligan, K, Wada, L, Schumacher, L, Riby, J & Kretchmer, N (1993) The effect of exercise on fructose absorption. Am J Clin Nutr 58, 7579.
Fujisawa, T, Riby, J & Kretchmer, N (1991) Intestinal absorption of fructose in the rat. Gastroenterology 101, 360367.
Gray, GM & Ingelfinger, FJ (1966) Intestinal absorption of sucrose in man: interrelation of hydrolysis and monosaccharide product absorption. J Clin Invest 45, 388398.
Hanson, PJ & Parsons, DS (1976) The utilization of glucose and production of lactate by in vitro preparations of rat small intestine: effects of vascular perfusion. J Physiol 255, 775795.
Hawley, JA, Dennis, SC & Noakes, TD (1992) Oxidation of carbohydrate ingested during prolonged endurance exercise. Sports Med 14, 2742.
Hoekstra, JH & van den Aker, JH (1996) Facilitating effect of amino acids on fructose and sorbitol absorption in children. J Pediatr Gastroenterol Nutr 23, 118124.
Holdsworth, CD & Dawson, AM (1964) The absorption of monosaccharides in man. Clin Sci 27, 371379.
Holloway, PA & Parsons, DS (1984) Absorption and metabolism of fructose by rat jejunum. Biochem J 222, 5764.
Jandrain, BJ, Pallikaris, N, Normand, S, Pirnay, F, Lacroix, M, Mosora, F, Pachiaudi, C, Gautier, JF, Scheen, AJ, Riou, JP, Lefèbvre, PJ (1993) Fructose utilization during exercise in men: rapid conversion of ingested fructose to circulating glucose. J Appl Physiol 74, 21462154.
Jentjens, RL, Achten, J & Jeukendrup, AE (2004a) High oxidation rates from combined carbohydrates ingested during exercise. Med Sci Sports Exerc 36, 15511558.
Jentjens, RL, Moseley, L, Waring, RH, Harding, LK & Jeukendrup, AE (2004b) Oxidation of combined ingestion of glucose and fructose during exercise. J Appl Physiol 96, 12771284.
Jentjens, RL, Venables, MC & Jeukendrup, AE (2004c) Oxidation of exogenous glucose, sucrose, and maltose during prolonged cycling exercise. J Appl Physiol 96, 12851291.
Jentjens, RLPG, Shaw, C, Birtles, T, Waring, RH, Harding, LE, Jeukendrup, AEOxidation of combined ingestion of glucose and sucrose during exercise Metabolism in press
Jeukendrup, AE & Jentjens, R (2000) Oxidation of carbohydrate feedings during prolonged exercise: current thoughts, guidelines and directions for future research. Sports Med 29, 407424.
Jeukendrup, AE, Vet-Joop, K, Sturk, A, Stegen, JH, Senden, J, Saris, WHM & Wagenmakers, AJM (2000) Relationship between gastro-intestinal complaints and endotoxaemia, cytokine release and the acute-phase reaction during and after a long-distance triathlon in highly trained men. Clin Sci 98, 4755.
Jeukendrup, AE, Wagenmakers, AJM, Stegen, JHCH, Gijsen, AP, Brouns, F & Saris, WHM (1999) Carbohydrate ingestion can completely suppress endogenous glucose production during exercise. Am J Physiol 276, E672E683.
Koivisto, VA, Karonen, SL & Nikkila, EA (1981) Carbohydrate ingestion before exercise: comparison of glucose, fructose, and sweet placebo. J Appl Physiol 51, 783787.
Kuipers, H, Verstappen, FTJ, Keizer, HA, Geurten, P, van Kranenburg, G (1985) Variability of aerobic performance in the laboratory and its physiologic correlates. Int J Sports Med 6, 197201.
Macdonald, I, Keyser, A & Pacy, D (1978) Some effects, in man, of varying the load of glucose, sucrose, fructose, or sorbitol on various metabolites in blood. Am J Clin Nutr 31, 13051311.
Massicotte, D, Peronnet, F, Allah, C, Hillaire-Marcel, C, Ledoux, M & Brisson, G (1986) Metabolic response to [ 13 C]glucose and [ 13 C]fructose ingestion during exercise. J Appl Physiol 61, 11801184.
Massicotte, D, Peronnet, F, Brisson, G, Bakkouch, K, Hillaire-Marcel, C (1989) Oxidation of a glucose polymer during exercise: comparison with glucose and fructose. J Appl Physiol 66, 179183.
Massicotte, D, Peronnet, F, Brisson, G, Boivin, L, Hillaire-Marcel, C (1990) Oxidation of exogenous carbohydrate during prolonged exercise in fed and fasted conditions. Int J Sports Med 11, 253258.
Mosora, F, Lefebvre, P, Pirnay, F, Lacroix, M, Luyckx, A & Duchesne, J (1976) Quantitative evaluation of the oxidation of an exogenous glucose load using naturally labeled 13 C-glucose. Metabolism 25, 15751582.
Murray, R, Paul, GL, Seifert, JG, Eddy, DE & Halaby, GA (1989) The effects of glucose, fructose, and sucrose ingestion during exercise. Med Sci Sports Exerc 21, 275282.
Nicholls, TJ, Leese, HJ & Bronk, JR (1983) Transport and metabolism of glucose by rat small intestine. Biochem J 212, 183187.
Pallikarakis, N, Sphiris, N & Lefebvre, P (1991) Influence of the bicarbonate pool and on the occurrence of 13 CO 2 in exhaled air. Eur J Appl Physiol 63, 179183.
Porteous, JW (1978) Glucose as a fuel for small intestine. Biochem Soc Trans 6, 534539.
Ravich, WJ, Bayless, TM & Thomas, M (1983) Fructose: incomplete intestinal absorption in humans. Gastroenterology 84, 2629.
Riby, JE, Fujisawa, T & Kretchmer, N (1993) Fructose absorption. Am J Clin Nutr 58, 748S753S
Robert, JJ, Koziet, J, Chauvet, D, Darmaun, D, Desjeux, JF & Young, VR (1987) Use of 13 C-labeled glucose for estimating glucose oxidation: some design considerations. J Appl Physiol 63, 17251732.
Rumessen, JJ, Gudmand-Hoyer, E (1986) Absorption capacity of fructose in healthy adults. Comparison with sucrose and its constituent monosaccharides. Gut 27, 11611168.
Sandle, GI, Lobley, RW, Warwick, R & Holmes, R (1983) Monosaccharide absorption and water secretion during disaccharide perfusion of the human jejunum. Digestion 26, 5360.
Shi, X, Schedl, HP, Summers, RM, Lambert, GP, Chang, RT, Xia, T & Gisolfi, CV (1997) Fructose transport mechanisms in humans. Gastroenterology 113, 11711179.
Shi, X, Summers, RW, Schedl, HP, Flanagan, SW, Chang, R & Gisolfi, CV (1995) Effects of carbohydrate type and concentration and solution osmolality on water absorption. Med Sci Sports 27, 16071615.
Wagenmakers, AJM, Brouns, F, Saris, WHM & Halliday, D (1993) Oxidation rates of orally ingested carbohydrates during prolonged exercise in man. J Appl Physiol 75, 27742780.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed