Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-29T09:44:30.776Z Has data issue: false hasContentIssue false

A human calorimeter for the direct and indirect measurement of 24 h energy expenditure

Published online by Cambridge University Press:  26 April 2012

M. J. Dauncey
Affiliation:
University of Cambridge and Medical Research Council, MRC Dunn Calorimetry Group, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
P. R. Murgatroyd
Affiliation:
University of Cambridge and Medical Research Council, MRC Dunn Calorimetry Group, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
T. J. Cole
Affiliation:
University of Cambridge and Medical Research Council, MRC Dunn Calorimetry Group, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 4AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A calorimeter for the continuous measurement of heat production and heat loss in the human subject, for at least 24 h, is described. The calorimeter operated on the heat-sink principle for direct calorimetry and an open-circuit system for indirect calorimetry.

2. Sensible heat loss was measured using a water-cooled heat exchanger, and the temperature of water entering the heat exchanger was controlled to maintain a mean temperature gradient of zero across the chamber walls.

3. Evaporative heat loss was determined from ingoing and outgoing wet-and-dry bulb temperatures and air flow-rates.

4. Problems associated with the calculation of evaporative heat loss and the estimation of the volume of incoming air in open-circuit systems are considered.

5. The calibration, limits of accuracy, sources of error and experiments with subjects are discussed.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

REFERENCES

Ashworth, A. & Wolff, H. S. (1969). Pflügers Arch. 306, 191.CrossRefGoogle Scholar
Atwater, O. & Benedict, F. G. (1905). Publs Carnegie Instn no. 42.Google Scholar
Awberry, J. H. & Griffiths, E. (1932). Proc. phys. Soc. 44, 132.CrossRefGoogle Scholar
Bell, G. H., Davidson, J. N. & Scarborough, H. (1968). Textbook of Biochemistry and Physiology, 7th ed. Edinburgh and London:E. & S. Livingstone Ltd.Google Scholar
Benzinger, T. H. & Kitzinger, C. (1949). Rev. scient. Instrum. 20, 849.CrossRefGoogle Scholar
Benzinger, T. H., Huebscher, R. G., Minard, D. & Kitzinger, C. (1958). J. appl. Physiol. 12, Suppl. 1, 1.CrossRefGoogle Scholar
Bittel, J. & Henane, R. (1975). J Physiol., Lond. 250, 475.CrossRefGoogle Scholar
Close, W. H., Dauncey, M. J. & Ingram, D. L. (1976). Proc. Nutr. Soc. 35, 134A.Google Scholar
Douglas, C. G. (1911). J. Physiol., Lond. 42, 17P.Google Scholar
Hardy, J. D. & DuBois, E. F. (1938). J. Nutr. 15, 461.CrossRefGoogle Scholar
Hardy, J. D. & DuBois, E. F. (1940). Proc. natn. Acad. Sci. USA 26, 389.CrossRefGoogle Scholar
McLean, J. A. (1971). J. Instn Heat. Vent. Engrs 39, 1.Google Scholar
Misson, B. H. (1974). Br. Poult. Sci. 15, 287.CrossRefGoogle Scholar
Montieth, J. L. (1954). Proc. phys. Soc. 67, 217.CrossRefGoogle Scholar
Mount, L. E., Holmes, C. W., Start, I. B. & Legge, A. J. (1967). J. agric. Sci., Camb. 68, 47.CrossRefGoogle Scholar
Passmore, R. & Durnin, J. V. G. A. (1955). Physiol. Rev. 35, 801.CrossRefGoogle Scholar
Pittet, Ph., Chappuis, Ph., Acheson, K., de Techtermann, F. & Jéquier, E. (1976). Br. J. Nutr. 35, 281.CrossRefGoogle Scholar
Short, A. (1976). The development and testing of a dynamic calorimeter for the investigation of metabolic disorders in man. PhD Thesis, University of Cambridge.Google Scholar
Spinnler, G., Jéquier, E., Favre, R., Dolivo, M. & Vannotti, A. (1973). J. appl. Physiol. 35, 158.CrossRefGoogle Scholar
Verstegen, M. W. A., Close, W. H., Start, I. B. & Mount, L. E. (1973). Br. J. Nutr. 30, 21.CrossRefGoogle Scholar
Wainman, F. W. & Blaxter, K. L. (1958). Publs Eur. Ass. Anim. Prod. no. 8, p. 80.Google Scholar
Whipple, F. J. W. (1933). Proc. phys. Soc. 45, 307.CrossRefGoogle Scholar
Winslow, C. E. A., Herrington, L. P. & Gagge, A. P. (1936). Am. J. Physiol. 116, 641.CrossRefGoogle Scholar