Skip to main content
×
×
Home

Identification of (poly)phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes

  • Christopher T. Ford (a1), Siân Richardson (a1), Francis McArdle (a1), Silvina B. Lotito (a2), Alan Crozier (a3), Anne McArdle (a1) and Malcolm J. Jackson (a1)...
Abstract

Diets rich in fruits and vegetables (FV), which contain (poly)phenols, protect against age-related inflammation and chronic diseases. T-lymphocytes contribute to systemic cytokine production and are modulated by FV intake. Little is known about the relative potency of different (poly)phenols in modulating cytokine release by lymphocytes. We compared thirty-one (poly)phenols and six (poly)phenol mixtures for effects on pro-inflammatory cytokine release by Jurkat T-lymphocytes. Test compounds were incubated with Jurkat cells for 48 h at 1 and 30 µm, with or without phorbol ester treatment at 24 h to induce cytokine release. Three test compounds that reduced cytokine release were further incubated with primary lymphocytes at 0·2 and 1 µm for 24 h, with lipopolysaccharide added at 5 h. Cytokine release was measured, and generation of H2O2 by test compounds was determined to assess any potential correlations with cytokine release. A number of (poly)phenols significantly altered cytokine release from Jurkat cells (P<0·05), but H2O2 generation did not correlate with cytokine release. Resveratrol, isorhamnetin, curcumin, vanillic acid and specific (poly)phenol mixtures reduced pro-inflammatory cytokine release from T-lymphocytes, and there was evidence for interaction between (poly)phenols to further modulate cytokine release. The release of interferon-γ induced protein 10 by primary lymphocytes was significantly reduced following treatment with 1 µm isorhamnetin (P<0·05). These results suggest that (poly)phenols derived from onions, turmeric, red grapes, green tea and açai berries may help reduce the release of pro-inflammatory mediators in people at risk of chronic inflammation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Identification of (poly)phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Identification of (poly)phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Identification of (poly)phenol treatments that modulate the release of pro-inflammatory cytokines by human lymphocytes
      Available formats
      ×
Copyright
This is an Open Access article, distributed under the terms of the Creative Commons Attribution licence (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium, provided the original work is properly cited
Corresponding author
* Corresponding author: Professor M. J. Jackson, email mjj@liverpool.ac.uk
Footnotes
Hide All

Both authors contributed equally to this work

Footnotes
References
Hide All
1. Zhang, X, Shu, XO, Xiang, YB, et al. (2011) Cruciferous vegetable consumption is associated with a reduced risk of total and cardiovascular disease mortality. Am J Clin Nutr 94, 240246.
2. McCullough, ML, Peterson, JJ, Patel, R, et al. (2012) Flavonoid intake and cardiovascular disease mortality in a prospective cohort of US adults. Am J Clin Nutr 95, 454464.
3. Nagura, J, Iso, H, Watanabe, Y, et al. (2009) Fruit, vegetable and bean intake and mortality from cardiovascular disease among Japanese men and women: the JACC Study. Br J Nutr 102, 285292.
4. Jing, Y, Han, G, Hu, Y, et al. (2009) Tea consumption and risk of type 2 diabetes: a meta-analysis of cohort studies. J Gen Intern Med 24, 557562.
5. Carter, P, Gray, LJ, Troughton, J, et al. (2010) Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. Biomed J 341, c4229.
6. Luo, J, Gao, YT, Chow, WH, et al. (2010) Urinary polyphenols and breast cancer risk: results from the Shanghai Women’s Health Study. Breast Cancer Res Treat 120, 693702.
7. Rossi, M, Lugo, A, Lagiou, P, et al. (2011) Proanthocyanidins and other flavonoids in relation to pancreatic cancer: a case–control study in Italy. Ann Oncol 23, 14881493.
8. Yang, G, Zheng, W, Xiang, YB, et al. (2011) Green tea consumption and colorectal cancer risk: a report from the Shanghai Men’s Health Study. Carcinogenesis 32, 16841688.
9. Zhong, L, Goldberg, MS, Gao, YT, et al. (2001) A population-based case-control study of lung cancer and green tea consumption among women living in Shanghai, China. Epidemiology 12, 695700.
10. Dai, Q, Borenstein, AR, Wu, Y, et al. (2006) Fruit and vegetable juices and Alzheimer’s disease: the Kame Project. Am J Med 119, 751759.
11. Tan, LC, Koh, WP, Yuan, JM, et al. (2008) Differential effects of black versus green tea on risk of Parkinson’s disease in the Singapore Chinese Health Study. Am J Epidemiol 167, 553560.
12. Chiva-Blanch, G, Urpi-Sarda, M, Llorach, R, et al. (2012) Differential effects of polyphenols and alcohol of red wine on the expression of adhesion molecules and inflammatory cytokines related to atherosclerosis: a randomized clinical trial. Am J Clin Nutr 95, 326334.
13. Tomé-Carneiro, J, Gonzálvez, M, Larrosa, M, et al. (2012) One-year consumption of a grape nutraceutical containing resveratrol improves the inflammatory and fibrinolytic status of patients in primary prevention of cardiovascular disease. Am J Cardiol 110, 356363.
14. Karlsen, A, Paur, I, Bøhn, SK, et al. (2010) Bilberry juice modulates plasma concentration of NF-κB related inflammatory markers in subjects at increased risk of CVD. Eur J Nutr 49, 345355.
15. Park, S-J, Ahmad, F, Philp, A, et al. (2012) Resveratrol ameliorates aging-related metabolic phenotypes by inhibiting cAMP phosphodiesterases. Cell 148, 421433.
16. Akagawa, M, Shigemitsu, T & Suyama, K (2003) Production of hydrogen peroxide by polyphenols and polyphenol-rich beverages under quasi-physiological conditions. Biosci Biotechnol Biochem 67, 26322640.
17. Long, LH, Hoi, A & Halliwell, B (2010) Instability of, and generation of hydrogen peroxide by, phenolic compounds in cell culture media. Arch Biochem Biophys 501, 162169.
18. Scalbert, A & Williamson, G (2000) Dietary intake and bioavailability of polyphenols. J Nutr 130, 2073S2085S.
19. Vitaglione, P, Barone Lumaga, R, Ferracane, R, et al. (2013) Human bioavailability of flavanols and phenolic acids from cocoa-nut creams enriched with free or microencapsulated cocoa polyphenols. Br J Nutr 109, 18321843.
20. Del Rio, D, Rodriguez-Mateos, A, Spencer, J, et al. (2013) Dietary (poly)phenolics in human health: structures, bioavailability, and evidence of protective effects against chronic diseases. Antioxid Redox Signal 18, 18181892.
21. Rechner, AR, Smith, MA, Kuhnle, G, et al. (2004) Colonic metabolism of dietary polyphenols: influence of structure on microbial fermentation products. Free Radic Biol Med 36, 212225.
22. Rodriguez-Mateos, A, Vauzour, D, Krueger, CG, et al. (2014) Bioavailability, bioactivity and impact on health of dietary flavonoinds and related compounds: an update. Arch Toxicol 88, 18031853.
23. Bao, B, Prasad, AS, Beck, FW, et al. (2003) Zinc modulates mRNA levels of cytokines. Am J Physiol Endocrinol Metab 285, E1095E1102.
24. Ader, P, Wessmann, A & Wolffram, S (2000) Bioavailability and metabolism of the flavonol quercetin in the pig. Free Radic Biol Med 28, 10561067.
25. Dong, Y, Guha, S, Sun, X, et al. (2012) Nutraceutical interventions for promoting healthy aging in invertebrate models. Oxid Med Cell Longev 2012, e718491.
26. Loke, WM, Jenner, AM, Proudfoot, JM, et al. (2009) A metabolite profiling approach to identify biomarkers of flavonoid intake in humans. J Nutr 139, 23092314.
27. Woodward, GM, Needs, PW & Kay, CD (2011) Anthocyanin-derived phenolic acids form glucuronides following simulated gastrointestinal digestion and microsomal glucuronidation. Mol Nutr Food Res 55, 378386.
28. Sanbongi, C, Suzuki, N & Sakane, T (1997) Polyphenols in chocolate, which have antioxidant activity, modulate immune functions in humans in vitro . Cell Immunol 177, 129136.
29. Mao, TK, Powell, J, Van de Water, J, et al. (2000) The effect of cocoa procyanidins on the transcription and secretion of interleukin 1 beta in peripheral blood mononuclear cells. Life Sci 66, 13771386.
30. Gupta, SC, Tyagi, AK, Deshmukh-Taskar, P, et al. (2014) Downregulation of tumor necrosis factor and other proinflammatory biomarkers by polyphenols. Arch Biochem Biophys 559, 9199.
31. Siriwardhana, N, Kalupahana, NS, Cekanova, M, et al. (2013) Modulation of adipose tissue inflammation by bioactive food compounds. J Nutr Biochem 24, 613623.
32. Crozier, A, Del Rio, D & Clifford, MN (2010) Bioavailability of dietary flavonoids and phenolic compounds. Mol Aspects Med 31, 446467.
33. Roowi, S, Stalmach, A, Mullen, W, et al. (2010) Green tea flavan-3-ols: colonic degradation and urinary excretion of catabolites by humans. J Agric Food Chem 58, 12961304.
34. Yamaguchi, T, Hiromasa, K, Kabashima-Kubo, R, et al. (2013) Nakamura M. galectin-7, induced by cis-urocanic acid and ultraviolet B irradiation, down-modulates cytokine production by T-lymphocytes. Exp Dermatol 22, 840842.
35. Baron-Menguy, C, Bocquet, A, Guihot, AL, et al. (2007) Effects of red wine polyphenols on postischemic neovascularization model in rats: low doses are proangiogenic, high doses anti-angiogenic. FASEB J 21, 35113521.
36. Mateo Anson, N, Aura, AM, Selinheimo, E, et al. (2011) Bioprocessing of wheat bran in whole wheat bread increases the bioavailability of phenolic acids in men and exerts antiinflammatory effects ex vivo . J Nutr 141, 137143.
37. Rechner, AR, Kuhnle, G, Hu, H, et al. (2002) The metabolism of dietary polyphenols and the relevance to circulating levels of conjugated metabolites. Free Radic Res 36, 12291241.
38. Pacheco-Palencia, LA, Mertens-Talcott, S & Talcott, ST (2008) Chemical composition, antioxidant properties, and thermal stability of a phytochemical enriched oil from açai (Euterpe oleracea Mart.). J Agric Food Chem 56, 46314636.
39. Tallarida, RJ (2011) Quantitative methods for assessing drug synergism. Genes Cancer 2, 10031008.
40. Perron, N & Brumaghim, J (2009) A review of the antioxidant mechanisms of polyphenol compounds related to iron binding. Cell Biochem Biophys 53, 75100.
41. Vasilaki, A, Mansouri, A, Van Remmen, H, et al. (2006) Free radical generation by skeletal muscle of adult and old mice: effect of contractile activity. Aging Cell 5, 109117.
42. Simeonova, PP, Leonard, S, Flood, L, et al. (1999) Redox-dependent regulation of interleukin-8 by tumor necrosis factor-alpha in lung epithelial cells. Lab Invest 79, 10271037.
43. Lakshminarayanan, V, Drab-Weiss, EA & Roebuck, KA (1998) H2O2 and tumor necrosis factor-α induce differential binding of the redox-responsive transcription factors AP-1 and NF-κB to the interleukin-8 promoter in endothelial and epithelial cells. J Biol Chem 273, 3267032678.
44. Long, LH, Hoi, A & Halliwell, B (2010) Instability of, and generation of hydrogen peroxide by, phenolic compounds in cell culture media. Arch Biochem Biophys 501, 162169.
45. Long, LH, Clement, MV & Halliwell, B (2000) Artifacts in cell culture: rapid generation of hydrogen peroxide on addition of (-)-epigallocatechin, (-)-epigallocatechin gallate, (+)-catechin, and quercetin to commonly used cell culture media. Biochem Biophys Res Commun 273, 5053.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Ford supplementary material
Figure S2

 Unknown (94 KB)
94 KB
UNKNOWN
Supplementary materials

Ford supplementary material
Figure S1

 Unknown (127 KB)
127 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed