Skip to main content Accessibility help

Impact of menstrual blood loss and diet on iron deficiency among women in the UK

  • Linda J. Harvey (a1), Charlotte N. Armah (a1), Jack R. Dainty (a1), Robert J. Foxall (a1), D. John Lewis (a2), Nicola J. Langford (a2) and Susan J. Fairweather-Tait (a1)...


Women of childbearing age are at risk of Fe deficiency if insufficient dietary Fe is available to replace menstrual and other Fe losses. Haem Fe represents 10–15 % of dietary Fe intake in meat-rich diets but may contribute 40 % of the total absorbed Fe. The aim of the present study was to determine the relative effects of type of diet and menstrual Fe loss on Fe status in women. Ninety healthy premenopausal women were recruited according to their habitual diet: red meat, poultry/fish or lacto-ovo-vegetarian. Intake of Fe was determined by analysing 7 d duplicate diets, and menstrual Fe loss was measured using the alkaline haematin method. A substantial proportion of women (60 % red meat, 40 % lacto-ovo-vegetarian, 20 % poultry/fish) had low Fe stores (serum ferritin <10 μg/l), but the median serum ferritin concentration was significantly lower in the red meat group (6·8 μg/l (interquartile range 3·3, 16·25)) than in the poultry/fish group (17·5 μg/l (interquartile range 11·3, 22·4) (P<0·01). The mean and standard deviation of dietary Fe intake were significantly different between the groups (P=0·025); the red meat group had a significantly lower intake (10·9 (sd 4·3) mg/d) than the lacto-ovo-vegetarians (14·5 (sd 5·5) mg/d), whereas that of the poultry/fish group (12·8 (sd 5·1) mg/d) was not significantly different from the other groups. There was no relationship between total Fe intake and Fe status, but menstrual Fe loss (P=0·001) and dietary group (P=0·040) were significant predictors of Fe status: poultry/fish diets were associated with higher Fe stores than lacto-ovo-vegetarian diets. Identifying individuals with high menstrual losses should be a key component of strategies to prevent Fe deficiency.

    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Impact of menstrual blood loss and diet on iron deficiency among women in the UK
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Impact of menstrual blood loss and diet on iron deficiency among women in the UK
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Impact of menstrual blood loss and diet on iron deficiency among women in the UK
      Available formats


Corresponding author

*Corresponding author: Dr Linda Harvey, fax +44 (0) 1603 507723, email


Hide All
Alexander, D, Ball, MJ & Mann, J (1994) Nutrient intake and haematological status of vegetarians and age-sex matched omnivores. Eur J Clin Nutr 48, 538546.
Anderson, JW, Konz, EC & Jenkins, DJA (2000) Health advantages and disadvantages of weight-reducing diets: a computer analysis and critical review. J Am Coll Nutr 19, 578590.
Andrews, NC (1999) Disorders of iron metabolism. N Engl J Med 341, 19861995.
Australian Iron Status Advisory Panel (1996) Iron Deficiency in Adults: A Comprehensive Management Guide. Sydney: Australian Iron Status Advisory Panel.
Bairati, I, Herbeth, B, Spyckerelle, , Didelotbarthelemy, J, Galan, P, Hercberg, S, Christides, JP & Decourcy, GP (1989) Dietary intake and other determinants of iron and folate status in female adolescents. J Clin Biochem Nutr 7, 143151.
Ball, MJ & Bartlett, MA (1999) Dietary intake and iron status of Australian vegetarian women. Am J Clin Nutr 70, 353358.
Barr, SI (1999) Vegetarianism and menstrual cycle disturbances: is there an association? Am J Clin Nutr 70, 549S554S.
Bjorn-Rasmussen, E, Hallberg, L, Isaksson, B & Arridson, B (1974) Food iron absorption in man. J Clin Invest 53, 247255.
Borch-Iohnsen, B, Meltzer, HM, Stenberg, V & Reinskou, T (1990) Iron status in a group of Norwegian menstruating women. Eur J Clin Nutr 44, 2328.
Borel, MJ, Smith, SM, Derr, J & Beard, JL (1991) Day-to-day variation in iron-status indices in healthy men and women. Am J Clin Nutr 54, 729735.
Bothwell, TH, Charlton, RW, Cook, JD & Finch, CA (1979) Iron Metabolism in Man. London: Blackwell Scientific.
Callard, GV, Litovsky, FS & DeMerre, LJ (1966) Menstruation in women with normally or artificially controlled cycles. Fert Steril 17, 684688.
Carter, P (1971) Spectrophotometric determination of serum iron at the submicrogram level with a new reagent (ferrozine). Anal Biochem 40, 450458.
Cooper, MJ & Zlotkin, SH (1996) Day-to-day variation of transferrin receptor and ferritin in healthy men and women. Am J Clin Nutr 64, 738742.
Craig, WJ (1994) Iron status in vegetarians. Am J Clin Nutr 59, 1233S1237S.
Department of Health (1991) Reference values for food, energy and nutrients for the United Kingdom. In Report of the Panel on Dietary Reference Values of the Committee on Medical Aspects of Food Policy. London: HMO.
Faber, M, Gouws, E, Benade, AJ & Labadarios, D (1986) Anthropometric measurements, dietary intake and biochemical data of Soth African lacto-ovo vegetarians. S Afr Med J 69, 733738.
Food and Agriculture Organization/World Health Organization (1988) Requirements of Vitamin A, Iron, Folate and Vitamin B12. Report of a Joint FAO/WHO Expert Consultation. FAO Food and Nutrition Series no. 23. Rome: FAO.
Flowers, CA, Kuizon, M, Beard, JL, Skikne, BS, Covell, AM & Cook, JD (1986) A serum ferritin assay for prevalence studies of iron deficiency. Am J Hematol 23, 141151.
Food and Nutrition Board/Institute of Medicine (2000) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. A Report of the Panel on Micronutrients, Subcommittees on Upper Reference Levels of Nutrients and of Interpretation and Uses of Dietary Reference Intakes, and the Standing Committee on the Scientific Evaluation of Dietary Reference Intakes. Washington, DC: National Academy Press.
Galan, S, Hercberg, S, Soustr, Y, Dop, MC & Dupin, H (1985) Factors affecting iron stores of French female students. Hum Nutr Clin Nutr 39C, 279287.
Gomez-Basauri, JV & Regenstein, JM (1992) Processing and frozen storage effects on the iron content of cod and mackerel. J Food Sci 57, 13321336.
Haddad, EH, Berk, LS, Kettering, JD, Hubbard, RW & Peters, WR (1999) Dietary intake and biochemical, hematologic and immune status of vegans compared with non-vegetarians. Am J Clin Nutr 70, 586S593S.
Hallberg, L (1995) Results of surveys to assess iron status in Europe. Nutr Rev 53, 314322.
Hallberg, L, Hogdahl, A-M, Nilsson, L & Rybo, G (1966) Menstrual blood loss – a population study. Variations at different ages and attempts to define normality. Acta Obstet Gynecol Scand 45, 320351.
Hallberg, L & Hulthen, L (2000) Prediction of dietary iron absorption: an algorithm for calculating absorption and bioavailability of dietary iron. Am J Clin Nutr 71, 11471160.
Hallberg, L & Nilsson, L (1964a) Determination of menstrual blood loss. Scand J Clin Lab Invest 16, 244248.
Hallberg, L & Nilsson, L (1964 b) Constancy of individual menstrual blood loss. Acta Obstet Gynecol Scand 43, 352359.
Han, D, McMillin, KW, Godber, JS, Bidner, TD, Younathan, MT, Marshall, DL & Hart, LT (1993) Iron distribution in heated beef and chicken muscles. J Food Sci 58, 697700.
Heath, A-LM, Skeaff, CM & Gibson, R (1998) Validation of a questionnaire method for estimating extent of menstrual blood loss in young adult women. J Trace Elem Med Biol 12, 231235.
Heath, A-LM, Skeaff, CM, Williams, S & Gibson, R (2001) The role of blood loss and diet in the aetiology of mild iron deficiency in premenopausal adult New Zealand women. Pub Health Nutr 4, 197206.
Helman, AD & Darnton-Hill, I (1987) Vitamin and iron status in new vegetarians. Am J Clin Nutr 45, 785789.
Henderson, L, Gregory, J & Swan, G (2002) The National Diet and Nutrition Survey: Adults Aged 19 to 64 Years, vol. 1. London: HMSO.
Henderson, L, Irving, K, Gregory, J, Bates, CJ, Prentice, A, Perks, J, Swan, G & Farron, M (2003) The National Diet and Nutrition Survey: Adults Aged 19 to 64 Years, vol. 1. London: HMSO.
Hendricks, DG, Mahoney, AW, Zhang, D & Yu, Y (1987) Validity and assumptions in estimating heme iron for determining available dietary iron. Fed Proc 46, 1160.
Higham, JM & Shaw, RW (1999) Clinical associations with objective menstrual blood volume. Eur J Obstet Gynecol 82, 7376.
Hulthen, L, Lindstedt, G, Lundberg, P-A & Hallberg, L (1998) Effect of mild infection on serum ferritin concentration – clinical and epidemiological implications. Eur J Clin Nutr 52, 7679.
Hunt, JR (2003) High-, but not low-bioavailability diets enable substantial control of women's iron absorption in relation to body iron stores, with minimal adaptation within several weeks. Am J Clin Nutr 78, 11681177.
Kenney, MA (1985) Factors related to iron nutrition of adolescent females. Nutr Res 5, 157166.
Larsson, G, Milsom, I, Lindstedt, G & Rybo, G (1992) The influence of a low-dose combined oral contraceptive on menstrual blood loss and iron status. Contraception 46, 327334.
Lawrenson, RA, Leydon, GM, Williams, TJ, Newson, RB & Feher, MD (1999) Patterns of contraception in UK women with type 1 diabetes mellitus: a GP database study. Diabet Med 16, 395399.
Liu, J-M, Hankinson, SE, Stampfer, MJ, Rifai, N, Willett, WC & Ma, J (2003) Body iron stores and their determinants in healthy postmenopausal US women. Am J Clin Nutr 78, 11601167.
McEndree, L, Kies, C & Fox, H (1983) Iron intake and nutritional status of lacto-ovovegetarian and omnivore students eating in a lacto-ovo vegetarian food service. Nutr Rep Int 27, 199206.
Milman, N, Clausen, J & Byg, K-E (1998) Iron status in 268 Danish women aged 18–30 years: influence of menstruation, contraceptive method, and iron supplementation. Ann Hematol 77, 1319.
Milman, N, Rosdahl, N, Lyhne, N, Jorgensen, T & Graudal, N (1993) Iron status in Danish women aged 35–65 years: relation to menstruation and method of contraception. Act Obstet Gynecol Scand 72, 601605.
Milsom, I, Andersson, K, Jonasson, K, Lindstedt, G & Rybo, G (1995) The influence of the Gyne-T 380S IUD on menstrual blood loss and iron status. Contraception 52, 175179.
Morabia, A, Bernstein, MS, Heritier, S & Beer-Borst, S (1999) A Swiss population based assessment of dietary habits before and after the March 1996 ‘mad cow disease’ crisis. Eur J Clin Nutr 53, 158163.
Nathan, I, Hackett, AF & Kirby, S (1996) The dietary intake of a group of vegetarian children aged 7–11 years compared with matched omnivores. Br J Nutr 75, 533544.
Nelson, M, Bakaliou, F & Trivedi, A (1994) Iron-deficiency anaemia and physical performance in adolescent girls from different ethnic backgrounds. Br J Nutr 72, 427433.
Newton, J, Barnard, G & Collins, W (1977) A rapid method for measuring menstrual blood loss using automatic extraction. Contraception 16, 269282.
Purchas, RW, Simcock, DC, Knight, TW & Wilkinson, BHP (2003) Variation in the form of iron in beef and lamb meat and losses of iron during cooking and storage. Int J Food Sci Technol 38, 82837.
Rangan, AM, Aitken, I, Blight, GD & Binns, CW (1997 a) Factors affecting iron status in 15–30 year old female students. Asia Pacific J Clin Nutr 6, 291295.
Rangan, AM, Ho, RWL, Blight, GD & Binns, CW (1997 b) Haem iron content of Australian meats and fish. Food Austr 49, 508511.
Razagui, IB, Barlow, PJ, Izmeth, MGA & Taylor, KDA (1991) Iron status in a group of long-stay mentally handicapped menstruating women: some dietary considerations. Eur J Clin Nutr 45, 331340.
R Development Core Team (2003) R: A Language and Environment for Statistical Computing.
Reddy, S & Sanders, TA (1990) Hematological studies on pre-menopausal Indian and Caucasian vegetarians compared with Caucasian omnivores. Br J Nutr 64, 331338.
Rybo, G & Hallberg, L (1966) Influence of heredity and environment on normal menstrual blood loss. Acta Obstet Gynecol Scand 45, 389410.
Soustre, Y, Dop, MC, Galan, P & Hercberg, S (1986) Dietary determinants of iron status in menstruating women. Int J Vitam Nutr Res 56, 281286.
Suominen, P, Punnonen, K, Rajamaki, A & Irjala, K (1998) Serum transferrin receptor and transferrin receptor-ferritin index identify healthy subjects with subclinical deficits. Blood 92, 28342839.
Vegetarian Society (2000) 21st Century Vegetarian through the Ages.
Vegetarian Society Summary of RealEat Polls 1984–2001. (2001)
Walters, GO, Miller, FM & Worwood, M (1973) Serum ferritin concentration and iron stores in normal subjects. J Clin Pathol 26, 770772.
West, CE & Van Staveren, WA (1991) Food composition, nutrient intake and the use of food composition tables. In Design Concepts in Nutritional Epidemiology, pp. 102103 [Margetts, BM and Nelson, M, editors]. New York: Oxford University Press.
Whitfield, JB, Treloar, S, Zhu, G, Powell, LW & Martin, NG (2003) Relative importance of female specific and non-female specific effects on variation in iron stores between women. Br J Haematol 120, 860866.
World Health Organization (1994) Indicators and Strategies for Iron Deficiency and Anemia Programmes. Report of the WHO/UNICEF/UNU Consultation. Geneva: WHO.
Worthington-Roberts, BS, Breskin, MW & Monsen, ER (1988) Iron status of premenopausal women in a university community and its relationship to habitual dietary sources of protein. Am J Clin Nutr 47, 275279.
Wyatt, KM, Dimmock, PW, Walker, TJ & O'Brien, PMS (2001) Determination of total menstrual blood loss. Fertil Steril 76, 125131.
Yokoi, K, Alcock, N & Sandstead, H (1994) Iron and zinc nutriture of premenopausal women; associations of diet with serum ferritin and plasma zinc disappearance, and of serum ferritin with plasma zinc and plasma disappearance. J Lab Clin Med 124, 852–131.



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed