Skip to main content
×
×
Home

In appreciation of Sir Philip Randle: The glucose-fatty acid cycle

  • Mary C. Sugden (a1)
Abstract

The coordinated regulation of metabolic fuel selection is crucial to energy homeostasis. Philip Randle and his colleagues developed the fundamental concept of interplay between carbohydrate and lipid fuels in relation to the requirement for energy utilisation and storage. Their insight has fashioned current understanding of the regulation of metabolism in health and disease, as well as providing a springboard for research into the roles of lipid derivatives in insulin resistance and, at the transcriptional level, lipid-regulated nuclear hormone receptors.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      In appreciation of Sir Philip Randle: The glucose-fatty acid cycle
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      In appreciation of Sir Philip Randle: The glucose-fatty acid cycle
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      In appreciation of Sir Philip Randle: The glucose-fatty acid cycle
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Professor Mary C. Sugden, fax 020 7882 2186, email m.c.sugden@qmul.ac.uk
References
Hide All
Abu-Elheiga, L, Matzuk, MM, Abo-Hashema, KA & Wakil, SJ (2001) Continuous fatty acid oxidation and reduced fat storage in mice lacking acetyl-CoA carboxylase 2. Science 291, 26132616.
Cai, D, Yuan, M, Frantz, DF, Melendez, PA, Hansen, L, Lee, J & Shoelson, SE (2005) Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med 11, 183190.
Chakravarthy, MV, Pan, Z, Zhu, Y, Tordjman, K, Schneider, JG, Coleman, T, Turk, J & Semenkovich, CF (2005) ‘New’ hepatic fat activates PPARalpha to maintain glucose, lipid, and cholesterol homeostasis. Cell Metab 1, 309322.
Desvergne, B, Michalik, L & Wahli, W (2006) Transcriptional regulation of metabolism. Physiol Rev 86, 465514.
Eberle, D, Hegarty, B, Bossard, P, Ferre, P & Foufelle, F (2004) SREBP transcription factors: master regulators of lipid homeostasis. Biochimie 86, 839848.
Ellis, BA, Poynten, A, Lowy, AJ, Furler, SM, Chisholm, DJ, Kraegen, EW & Cooney, GJ (2000) Long-chain acyl-CoA esters as indicators of lipid metabolism and insulin sensitivity in rat and human muscle. Am J Physiol Endocrinol Metab 279, E554E560.
Finck, BN (2006) Effects of PPARalpha on cardiac glucose metabolism: a transcriptional equivalent of the glucose-fatty acid cycle? Expert Rev Cardiovasc Ther 4, 161171.
Frayn, KN (2002) Adipose tissue as a buffer for daily lipid flux. Diabetologia 45, 12011210.
Frayn, KN (2003) The glucose-fatty acid cycle: a physiological perspective. Biochem Soc Trans 31, 11151119.
Garland, PB, Newsholme, EA & Randle, PJ (1962) Effect of fatty acids, ketone bodies, diabetes and starvation on pyruvate metabolism in rat heart and diaphragm muscle. Nature 195, 381383.
Gromada, J (2006) The free fatty acid receptor GPR40 generates excitement in pancreatic beta-cells. Endocrinology 147, 672673.
Hegarty, BD, Furler, SM, Ye, J, Cooney, GJ & Kraegen, EW (2003) The role of intramuscular lipid in insulin resistance. Acta Physiol Scand 178, 373383.
Holness, MJ, Fryer, LG & Sugden, MC (1997) Endocrine and nutritional modulation of glucose disposal and storage in muscle. Biochem Soc Trans 25, 17.
Kersten, S, Seydoux, J, Peters, JM, Gonzalez, FJ, Desvergne, B & Wahli, W (1999) Peroxisome proliferator-activated receptor alpha mediates the adaptive response to fasting. J Clin Invest 103, 14891498.
Kim, JK, Kim, YJ, Fillmore, JJ, Chen, Y, Moore, I, Lee, J, Yuan, M, Li, ZW, Karin, M, Perret, P, Shoelson, SE & Shulman, GI (2001) Prevention of fat-induced insulin resistance by salicylate. J Clin Invest 108, 437446.
Koyama, K, Chen, G, Lee, Y & Unger, RH (1997) Tissue triglycerides, insulin resistance, and insulin production: implications for hyperinsulinemia of obesity. Am J Physiol 273, E708E713.
Leone, TC, Weinheimer, CJ & Kelly, DP (1999) A critical role for the peroxisome proliferator-activated receptor alpha (PPARalpha) in the cellular fasting response: the PPARalpha-null mouse as a model of fatty acid oxidation disorders. Proc Natl Acad Sci USA 96, 74737478.
McGarry, JD (1998) Glucose-fatty acid interactions in health and disease. Am J Clin Nutr 67, 500S504S.
Muoio, DM & Newgard, CB (2006) Obesity-related derangements in metabolic regulation. Annu Rev Biochem 75, 367401.
Perseghin, G, Petersen, K & Shulman, GI (2003) Cellular mechanism of insulin resistance: potential links with inflammation. Int J Obes Relat Metab Disord 27, Suppl. 3, S6S11.
Poitout, V & Robertson, RP (2002) Minireview: Secondary beta-cell failure in type 2 diabetes-a convergence of glucotoxicity and lipotoxicity. Endocrinology 143, 339342.
Prentki, M, Vischer, S, Glennon, MC, Regazzi, R, Deeney, JT & Corkey, BE (1992) Malonyl-CoA and long chain acyl-CoA esters as metabolic coupling factors in nutrient-induced insulin secretion. J Biol Chem 267, 58025810.
Randle, PJ (1998) Regulatory interactions between lipids and carbohydrates: the glucose fatty acid cycle after 35 years. Diabetes Metab Rev 14, 263283.
Randle, PJ, Garland, PB, Hales, CN & Newsholme, EA (1963) The glucose fatty-acid cycle. Its role in insulin sensitivity and the metabolic disturbances of diabetes mellitus. Lancet 1, 785789.
Ruderman, NB, Saha, AK & Kraegen, EW (2003) Minireview: malonyl CoA, AMP-activated protein kinase, and adiposity. Endocrinology 144, 51665171.
Saha, AK & Ruderman, NB (2003) Malonyl-CoA and AMP-activated protein kinase: an expanding partnership. Mol Cell Biochem 253, 6570.
Sugden, MC & Holness, MJ (2004) Potential role of peroxisome proliferator-activated receptor-alpha in the modulation of glucose-stimulated insulin secretion. Diabetes 53, Suppl. 1, S71S81.
Sugden, MC & Holness, MJ (2006) Skeletal muscle lipid metabolism and the adipo-muscular axis. Future Lipidology 1, 153162.
Summers, SA & Nelson, DH (2005) A role for sphingolipids in producing the common features of type 2 diabetes, metabolic syndrome X, and Cushing's syndrome. Diabetes 54, 591602.
Thompson, AL & Cooney, GJ (2000) Acyl-CoA inhibition of hexokinase in rat and human skeletal muscle is a potential mechanism of lipid-induced insulin resistance. Diabetes 49, 17611765.
Zammit, VA (1999) The malonyl-CoA-long-chain acyl-CoA axis in the maintenance of mammalian cell function. Biochem J 343, 505515.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed