Skip to main content
×
Home
    • Aa
    • Aa

In vitro folate deficiency induces apoptosis by a p53, Fas (Apo-1, CD95) independent, bcl-2 related mechanism in phytohaemagglutinin-stimulated human peripheral blood lymphocytes

  • Hui-Li Lin (a1), Chung-Jern Chen (a2), Wen-Chan Tsai (a2), Jeng-Hsien Yen (a2) and Hong-Wen Liu (a2)...
Abstract

In vitro folate deficiency is associated with S phase accumulation and apoptosis in various cell types. To investigate the role of p53 and two apoptosis-related molecules, bcl-2 and Fas antigen (Apo-1, CD95), in the mechanism whereby folate-deficient lymphocytes accumulate and undergo apoptosis in the S phase, normal human peripheral blood lymphocytes were cultured for 3–9 d in control medium or in specially ordered and formulated HAM’ F-10 medium lacking folic acid, thymidine and hypoxanthine. Cells were stimulated with phytohaemagglutinin for the final 72 h prior to harvesting. The results indicate that p53 expression was downregulated in folate-deficient lymphocytes when compared with the control lymphocytes during the relevant period of S phase accumulation and apoptosis. In addition, folate deficiency was also found to downregulate IL-2, Fas antigen and bcl-2 expression, in terms of either mRNA or protein levels. The downregulation of Fas antigen suggests that folate deficiency-induced apoptosis probably does not occur via the Fas pathway. As IL-2 is a known inducer of bcl-2, and the downregulation of bcl-2 induces apoptosis, the downregulation of IL-2 and bcl-2 is suggested to play an important role in apoptosis. The complete rescue of folate-deficient lymphocytes from apoptosis was achieved by folic acid, thymidine or hypoxanthine alone or thymidine and hypoxanthine in combination. These results suggest that IL-2 depletion by folate deficiency in lymphocytes reduces the bcl-2 level, thereby triggering deoxynucleoside triphosphate pool imbalance and p53-independent apoptosis.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      In vitro folate deficiency induces apoptosis by a p53, Fas (Apo-1, CD95) independent, bcl-2 related mechanism in phytohaemagglutinin-stimulated human peripheral blood lymphocytes
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      In vitro folate deficiency induces apoptosis by a p53, Fas (Apo-1, CD95) independent, bcl-2 related mechanism in phytohaemagglutinin-stimulated human peripheral blood lymphocytes
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      In vitro folate deficiency induces apoptosis by a p53, Fas (Apo-1, CD95) independent, bcl-2 related mechanism in phytohaemagglutinin-stimulated human peripheral blood lymphocytes
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr Hong-Wen Liu, fax +886 7 3215842, email liuhow@kmu.edu.tw
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 65 *
Loading metrics...

Abstract views

Total abstract views: 75 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 27th May 2017. This data will be updated every 24 hours.