Skip to main content Accessibility help
×
×
Home

In vivo metabolic tracking of 14C-radiolabelled isoflavones in kudzu (Pueraria lobata) and red clover (Trifolium pratense) extracts

  • Jonathan G. Mun (a1), Michael D. Grannan (a2), Pamela J. Lachcik (a2), Adam Reppert (a1), Gad G. Yousef (a3), Randy B. Rogers (a3), Elsa M. Janle (a2), Connie M. Weaver (a2) and Mary Ann Lila (a1) (a3)...
Abstract

Absorption, distribution and elimination of 14C-labelled isoflavone-containing extracts from kudzu (Pueraria lobata) root culture and red clover (Trifolium pratense) cell culture were investigated in an in vivo rat model. The predominant isoflavones in the kudzu extract were the glycosides puerarin, daidzin and malonyl daidzin, while in the red clover extract, the major isoflavones were formononetin and its derivatives, genistein and biochanin A, with radioactivities of 3·770 and 7·256 MBq/g, respectively. Male Sprague–Dawley rats, implanted with a jugular catheter and a subcutaneous ultrafiltrate probe, were orally administered with 14C-labelled isoflavone extracts from either kudzu or clover cell cultures. Serum, interstitial fluid (ISF), urine and faeces were collected using a Culex® Automated Blood Collection System for 24 h. Analysis of bone tissues revealed that radiolabel accumulated in the femur, tibia and vertebrae at 0·04, 0·03 and 0·01 % of the administered dose, respectively, in both kudzu and red clover treatments. The liver accumulated the greatest concentration of radiolabel among the tissues tested, at 1·99 and 1·54 % of the administered kudzu and red clover extracts, respectively. Serum and ISF analysis showed that both extracts were rapidly absorbed, distributed in various tissues, and largely eliminated in the urine and faeces. Urine and faeces contained 8·53 and 9·06 % of the kudzu dose, respectively, and 3·60 and 5·64 % of the red clover dose, respectively. Serum pharmacokinetics suggest that extracts from kudzu may undergo enterohepatic circulation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      In vivo metabolic tracking of 14C-radiolabelled isoflavones in kudzu (Pueraria lobata) and red clover (Trifolium pratense) extracts
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      In vivo metabolic tracking of 14C-radiolabelled isoflavones in kudzu (Pueraria lobata) and red clover (Trifolium pratense) extracts
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      In vivo metabolic tracking of 14C-radiolabelled isoflavones in kudzu (Pueraria lobata) and red clover (Trifolium pratense) extracts
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr Mary Ann Lila, fax+1 704 250 5409, email imagemal@illinois.edu
References
Hide All
1Jacobs, MN & Lewis, DFV (2002) Steroid hormone receptors and dietary ligands: a selected review. Proc Nutr Soc 61, 105122.
2Genant, H, Lucas, J, Weiss, S, et al. (1997) Low-dose esterified estrogen therapy: effects on bone, plasma estradiol concentrations, endometrium, and lipid levels. Arch Intern Med 157, 26092615.
3Kaufman, PB, Duke, JA, Brielmann, H, et al. (1997) A comparative survey of leguminous plants as sources of the isoflavones, genistein and daidzein: implications for human nutrition and health. J Altern Complement Med 3, 712.
4Swinny, EE & Ryan, KG (2005) Red clover Trifolium pratense L. phytoestrogens: UV-B radiation increases isoflavone yield, and postharvest drying methods change the glucoside conjugate profiles. J Agric Food Chem 53, 82738278.
5Zhang, Y, Zeng, X, Zhang, L, et al. (2007) Stimulatory effect of puerarin on bone formation through activation of PI3K/Akt pathway in rat calvaria osteoblasts. Planta Med 73, 341347.
6Wong, R & Rabie, B (2007) Effect of puerarin on bone formation. Osteoarthritis Cartilage 15, 894899.
7Urasopon, N, Hamada, Y, Cherdshewasart, W, et al. (2008) Preventive effects of Pueraria mirifica on bone loss in ovariectomized rats. Maturitas 59, 137148.
8Wang, X, Wu, J, Chiba, H, et al. (2003) Puerariae radix prevents bone loss in ovariectomized mice. J Bone Miner Metab 21, 268275.
9Clifton-Bligh, PB, Baber, RJ, Fulcher, GR, et al. (2001) The effect of isoflavones extracted from red clover (Rimostil) on lipid and bone metabolism. Menopause 8, 259265.
10Atkinson, C, Compston, JE, Day, NE, et al. (2004) The effects of phytoestrogen isoflavones on bone density in women: a double-blind, randomized, placebo-controlled trial. Am J Clin Nutr 79, 326333.
11Grusak, MA (1997) Intrinsic stable isotope labeling of plants for nutritional investigations in humans. J Nutr Biochem 8, 164171.
12Grusak, MA, Rogers, RB, Yousef, GG, et al. (2004) An enclosed-chamber labeling system for the safe 14C-enrichment of phytochemicals in plant cell suspension cultures. In Vitro Cell Dev Biol Plant 40, 8085.
13Yousef, GG, Seigler, DS, Grusak, MA, et al. (2004) Biosynthesis and characterization of 14C-enriched flavonoid fractions from plant cell suspension cultures. J Agric Food Chem 52, 11381145.
14Lila, MA, Yousef, GG, Jiang, Y, et al. (2005) Sorting out bioactivity in flavonoid mixtures. J Nutr 135, 12311235.
15Chandra, A, Rana, J & Li, Y (2001) Separation, identification, quantification, and method validation of anthocyanins in botanical supplement raw materials by HPLC and HPLC–MS. J Agric Food Chem 49, 35153521.
16Murashige, T & Skoog, F (1962) A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol Plant 15, 473497.
17Rogers, RB & Smith, MAL (1992) Consequences of in vitro and ex vitro root initiation for miniature rose production. J Hort Sci 67, 535540.
18Hakamatsuka, T, Ebizuka, Y & Sankawa, U (1994) Pueraria lobata (kudzu vine): in vitro culture and the production of isoflavonoids. vol. 28, Biotechnology in Agriculture and Forestry, Medicinal and Aromatic Plants VII, pp. 386400 [Bajai, YPS, editor]. Berlin, Germany: Springer-Verlag.
19Beach, KH & Smith, RR (1979) Plant regeneration from callus of red and crimson clover. Plant Sci Lett 16, 231237.
20Gamborg, OL, Miller, RA & Ojima, K (1968) Nutrient requirements of suspension cultures of soybean root cells. Exp Cell Res 50, 151158.
21Engelmann, N, Rogers, RB, Vattem, P, et al. (2006) Copper chloride elicitation of in vitro red clover isoflavones. J Soc In Vitro Biol 42, 34A.
22Fernandez, LA, Rettori, O & Mejia, RH (1966) Correlation between body fluid volumes and body weight in the rat. Am J Physiol 210, 877879.
23Reppert, A, Yousef, GG, Rogers, RB, et al. (2008) Isolation of radiolabeled isoflavones from kudzu (Pueraria lobata) root cultures. J Agric Food Chem 56, 78607865.
24Prasain, JK, Reppert, A, Jones, K, et al. (2007) Identification of isoflavone glycosides in Pueraria lobata cultures by tandem mass spectrometry. Phytochem Anal 18, 5059.
25Engelmann, NJ, Reppert, A, Yousef, G, et al. (2009) In vitro production of radiolabeled red clover (Trifolium pratense) isoflavones. Plant Cell Tissue Organ Cult (epublication ahead of print version 26 May 2009).
26Prasain, JK, Peng, N, Moore, R, et al. (2009) Tissue distribution of puerarin and its conjugated metabolites in rats assessed by liquid chromatography–tandem mass spectrometry. Phytomedicine 16, 6571.
27Janning, P, Schuhmacher, US, Upmeier, A, et al. (2000) Toxicokinetics of the phytoestrogen daidzein in female DA/Han rats. Arch Toxicol 74, 421430.
28Sfakianos, J, Coward, L, Kirk, M, et al. (1997) Intestinal uptake and biliary excretion of the isoflavone genistein in rats. J Nutr 127, 12601268.
29Occhiuto, F, De Pasquale, R, Guglielmo, G, et al. (2007) Effects of phytoestrogenic isoflavones from red clover (Trifolium pratense L.) on experimental osteoporosis. Phytother Res 21, 130134.
30Prasain, JK, Jones, K, Brissie, N, et al. (2004) Identification of puerarin and its metabolites in rats by liquid chromatography–tandem mass spectrometry. J Agric Food Chem 52, 37083712.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed