Skip to main content
×
Home
    • Aa
    • Aa

Influence of caecal microflora and of two dietary protein levels on the adaptation of the exocrine pancreas: comparative study in germ-free and conventional rats

  • Evelyne F. Lhoste (a1), Isabelle Catala (a1), Michèle Fiszlewicz (a1), A. M. Gueugneau (a1), Fran¸oise Popot (a1), Pierre Vaissade (a1), Tristan Corring (a1) and Odette Szylit (a1)...
Abstract
Abstract

Dietary proteins are degraded by both endogenous enzymes and the caecal microflora. In conventional rats the enzyme content of the pancreas depends on the amount of dietary protein. The influence of the caecal microflora on this process is unknown. We report here the effect of the caecal microflora on pancreatic enzymes (proteases, amylase (EC 3.2.1.l), lipase (EC 3.1.1.3)) and on colonic metabolites (NH3, urea, short-chain fatty acids). Germ-free and conventional male Fischer rats were fed for 3 weeks with a diet containing 220 or 450 g protein/kg provided as a mixture of fish concentrate and soyabean isolate. The excretion of NH3, and the pH were specifically increased by the high-protein diet in the germ-free rats. The higher production of isobutyrate, valerate and isovalerate in conventional rats fed on the high-protein diet reflected a high bacterial proteolytic activity since these short-chain fatty acids are specific indicators of this activity. The microflora hydrolysed urea to NH3 and maintained the pH at neutrality whatever the amount of protein in the diet since there were changes in germ-free rats but not in conventional ones. In germ-free rats, amylase, trypsin (EC 3.4.21.4), elastase (EC 3.4.21.36) and carboxypeptidase A (EC 3.4.17.1) specific activities were significantly lower than in conventional rats. The adaptation of the pancreas to the 450 g protein/kg diet was not impaired by the bacterial status except for the specific activity of chymotrypsin (EC 3.4.21.1) which was more increased by this diet in germ-free than in conventional rats. Moreover, the specific activity of lipase increased only in conventional rats fed on the 450g protein/kg diet. In conclusion, we observed a relationship between the enzyme content of the pancreas and the presence or absence of the caecal microflora suggesting that bacterial fermentation influences pancreatic function.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of caecal microflora and of two dietary protein levels on the adaptation of the exocrine pancreas: comparative study in germ-free and conventional rats
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Dropbox account. Find out more about sending content to Dropbox.

      Influence of caecal microflora and of two dietary protein levels on the adaptation of the exocrine pancreas: comparative study in germ-free and conventional rats
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your Google Drive account. Find out more about sending content to Google Drive.

      Influence of caecal microflora and of two dietary protein levels on the adaptation of the exocrine pancreas: comparative study in germ-free and conventional rats
      Available formats
      ×
Copyright
References
Hide All
Bieth J., Metais P. & Warter J. (1966). Etude des protéases pancréatiques I. Dosage de la trypsine par la benzoylarginine-P-nitroanilide et ses applications. (Study of pancreatic proteases. The assay of trypsin by benzoyl-P-nitroanilide and its applications). Annales Biologie Clinique 24, 787803.
Bieth J., Metais P. & Warter J. (1968). Etude des protéases pancréatiques II. Dosage de la chymotrypsine par la succinyl-phénylalanine-P-nitroanilide et ses applications. (Study of pancreatic proteases. The assay of chymotrypsin by succinyl-phenylalanine-P-nitroanilide and its applications). Annales Biologie Clinique 26,143158.
Borgström B., Dahlqvist A., Gustafsson B. E., Lundh G. & Malmquist J. (1959). Trypsin, invertase and amylase contents of faeces of germfree rats. Proceedings of the Sociery for Experimental Biology and Medicine 102, 154155.
Brannon P. M. (1990). Adaptation of the exocrine pancreas to diet. Annual Review of Nutrition 10, 85105.
Coates M. E. (1968). Nutrition and metabolism. In The Germ-free Animal in Research, pp. 161179 [Coates M. E., Gordon H. A. & Wostmann B. S., editors]. New York: Academic Press.
Coates M. E. (1973). Gnotobiotic animals in nutrition research. Proceedings of the Nutrition Society 32, 5358.
Combe E., Demarne Y., Gueguen L., Ivorec-Szylit O., Meslin J. C. & Sacquet E. (1976). Some aspects of the relationships between gastro-intestinal flora and host nutrition. World Review of Nutrition and Dietetics 24, 157.
Combe E., Penot E., Charlier H. & Sacquet E. (1965). Métabolisme du rat “gem-free”. Teneurs des contenus digestifs en certains composés azotés, en sodium et en potassium. Teneurs de quelques tissus en acides nucléiques (Metabolism of the germ-free rat. Some nitrogenous compounds, sodium and potassium contents of the intestine. The nuclei acid content of some tissues). Annales de Biologie Animale, Biochimie, Biophysique 5, 189206.
Combe E., Pion R. & Sacquet E. (1970). Influence de la nature et du taux des protéines alimentaires sur la composition en acides aminés du contenu du caecum du rat axénique (Influence of the nature and amount of dietary proteins on the amino acid coiltents of the caecum of axenic rats). Annales de Biologie Animale, Biochimie, Biophysique 10, 697702.
Committee on Diet and Health (1989). Dier and Health, Implications of Reducing Chronic Diseases Risk. Washington, DC: National Academy Press.
Corring T., Juste C. & Lhoste E. F. (1989).Nutritional regulation of pancreatic and biliary Secretions. Nutrition Research Reviews 2, 161180.
Corring T., Moreau C. & Ducluzeau R. (1979). Comparative apparent digestibility of casein in holoxenic, axenic, and Clostridium bifermentans monoassociated rats. American Journal of Clinical Nutrition 32, 12311237.
Cuber J. C., Vilas F., Charles N., Bernard C. & Chayvialle J. A. (1989). Bombesin and nutrients stimulate release of CCK through distinct pathways in the rat. American Journal of Physiology 256, G989G996.
Cummings J. H. & Bingham S. A. (1987). Dietary fibre, fermentation and large bowel cancer. Cancer Surveys 6, 601614.
Demigné C. & Remesy C. (1979). Urea cycling and ammonia absorption in vivo in the digestive tract of the rat. Annales de Biologie Animale, Biochimie, Biophysique 19, 929935.
Dropsy G. & Boy J. (1961). Détermination de l'ammoniémie, méthode automatique par dialyse (Assay of ammoniaemia: an automatic method using dialysis). Annales Biologie Clinique Paris 19, 313317.
Dufour C. (1989). Impacts de la microflore digestive sur les effets nutritionnels et physiologiques des fibres alimentaires chez le rat hétéroxénique à flore humaine (Influence of a human microflora on the effects of dietary fibres on nutritional and physiological parameters in the heteroxenic rat). Thesis, Institut National Agronomique, Paris-Grignon.
Genell S., Gustafsson B. E. & Ohlsson K. (1976).Quantification of active pancreatic endopeptidases in the intestinal contents of germfree and conventional rats. Scandinavian Journal of Gastroenterology 11, 757762.
Goodlad R. A., Ratcliffe B., Fordham J. P., Ghatei M. A., Domin J., Bloom S. R. & Wright N. A. (1989). Plasma enteroglucagon, gastrin and peptide YY in conventional and germ-free rats refed with a fibre-free or fibre-supplemented diet. Quarterly Journal of Experimental Physiology 74, 437442.
Le Huérou-Luron I., Lhoste E., Wicker-Planquart C., Dakka N., Toullec R., Corring T., Guilloteau P. & Puigserver A. (1993). Molecular aspects of enzyme synthesis in the exocrine pancreas with emphasis on development and nutritional regulation. Proceedings of the Nutrition Society 52, 301313.
Lepkovsky S., Furuta F., Ozone K. & Koike T. (1966). The proteases, amylase and lipase of the pancreas and intestinal contents of germ-free and conventional rats. British Journal of Nutrition 20, 257261.
Levenson S. M., Crowley L. V., Horowitz R. E. & Malm O. J. (1959). The metabolism of carbon-labeled urea in the germfree rat. Journal of Biological Chemistry 234, 20612062.
Lhoste E. F., Fiszlewicz M., Gueugneau A. M., Wicker-Planquart C., Puigserver A. & Corring T. (1993). Effects of dietary proteins on some pancreatic mRNAs encoding digestive enzymes in the pig. Journal of Nutritional Biochemistry 4, 143152.
Lin H. C. & Visek W. J. (1991). Large intestinal pH and ammonia in rats: dietary fat and protein interactions. Journal of Nutrition 121, 832843.
Lupton J. R. & Marchand L. J. (1989). Independent effects of fiber and protein on colonic luminal ammonia concentration. Journal of Nutrition 119, 235241.
Marsh W. H., Fingerhut B. & Miller H. (1965). Automated and manual direct methods for the determination of blood urea. Clinical Chemistry 11, 624627.
McBurney M. I., Van Soest P. J. & Jeraci J. L. (1987). Colinic carcinogenesis: the microbial feast or famine mechanism. Nutrition and Cancer 10, 2328.
McNeil N. I. (1988). Nutritional implications of human and mammalian large intestinal function. World Review of Nutrition and Dietetics 56, 142.
Meslin J. C., Andrieux C., Sakata T., Beaumatin P., Bensaada M., Popot F., Szylit O. & Durand M. (1993). Effects of galacto-oligosaccharide and bacterial status on mucin distribution in mucosa and on large intestine fermentation in rats. British Journal of Nutrition 69, 903912.
Ohbo M., Katoh K. & Sasaki Y. (1989). Effects of short-, medium-, and long-chain fatty acids on amylase release from pancreatic segments of rats. Australian Journal of Applied Sciences 2, 193194.
Ottensheim O. M. & Bartley D. A. (1971). Improved gas chromatography separation of free acids C2-C5 in dilute solution. Analytical Chemistry 43, 952955.
Reddy B. S., Pleasants J. R. & Wostmann B. S. (1969). Pancreatic enzymes in germfree and conventional rats fed chemically defined, water soluble diet free from natural substances. Journal of Nutrition 97, 327334.
Rérat A. (1978). Digestion and absorption of carbohydrates and nitrogenous matters in the hindgut of the omnivorous nonruminant animal. Journal of Animal Science 46, 18081837.
Salter D. N. (1973). Influence of gut micro-organisms on utilization of dietary protein. Proceedings of the Nutrition Society 32, 6571.
Visek W. J. (1978). The mode of growth promotion by antibiotics. Journal of Animal Science 46, 11471169.
Von Juhr N. C. (1980). Intestinale Enzymeaktivität bei keimfreien und konventionellen Ratten und Mäusen (Intestinal enzyme activities in germ-free and conventional rats and mice). Zeitschrift fuer Versuchstierkunde 22,197203.
Wiech N. L., Hamilton J. G. & Miller O. N. (1967). Absorption and metabolism of dietary triglycerides in germfree and conventional rats. Journal of Nutrition 93, 324330.
Yamasaki M., Brown J. R., Cox D. J., Greenshields R. N., Wade R. D. & Neurath H. (1963). Procarboxypeptidase A-S6. Further studies of its isolation and properties. Biochemistry 2, 859866.
Yanagida K., Takahashi M., Honma C., Kametaka M. & Yamanaka M. (1985). Ammonia in intestinal contents from germfree rats. Experimetal Animals 34, 463465.
Zarling E. J. & Ruchim M. A. (1987). Protein origin of the volatile fatty acids isobutyrate and isovalerate in human stool. Journal of Laboratory and Clinical Medicine 109, 566570.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 34 *
Loading metrics...

Abstract views

Total abstract views: 47 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 23rd October 2017. This data will be updated every 24 hours.