Hostname: page-component-848d4c4894-m9kch Total loading time: 0 Render date: 2024-05-13T00:47:48.648Z Has data issue: false hasContentIssue false

Influence of dietary leucine content on the activities of branched-chain amino acid aminotransferase (EC 2.6.1.42) and branched-chain α-keto acid dehydrogenase (EC 1.2.4.4) complex in tissues of preruminant lambs

Published online by Cambridge University Press:  09 March 2007

Isabelle Papet
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté-INRA Theix, 63122 Ceyrat, France
Nadia Lezebot
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté-INRA Theix, 63122 Ceyrat, France
Francoise Barre
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté-INRA Theix, 63122 Ceyrat, France
Maurice Arnal
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté-INRA Theix, 63122 Ceyrat, France
Alfred E. Harper
Affiliation:
Department of Biochemistry, University of Wisconsin-Madison, Madison, WI 53706, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Branched-chain amino acid aminotransferase (EC 2.6.1.42; BCAAT) and branched-chain α-keto acid dehydrogenase (EC 1.2.4.4; BCKDH) activities were measured in preruminant lamb liver, longissimus dorsi muscle, kidney, jejunum and adipose tissue, 2 h after a meal with or without an excess of leucine.

2. Skeletal muscle contained about 70% of the total basal BCAAT activities of the tissues studied whereas liver contained about 60% of the total BCKDH activities of these tissues.

3. BCAAT activities were very low in preruminant lamb tissues. BCKDH was more phosphorylated in tissues of preruminant lambs than in rats, especially in liver. These low catalytic potentialities might contribute to a low rate of branched-chain amino acid catabolism in sheep.

4. Ingestion of an excess of leucine led to an increase in liver and jejunum BCAAT activities and activation of BCKDH in jejunum.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1988

References

Adibi, S. A., Peterson, J. A. & Krzysik, B. A. (1975). American Journal of Physiology 228, 432434.CrossRefGoogle Scholar
Aftring, R. P., Kevin, K. P. & Buse, M. G. (1986). American Journal of Physiology 250, E599E604.Google Scholar
Ballard, J. F., Filsell, O. H. & Jarrett, I. G. (1976). Metabolism 25, 415418.CrossRefGoogle Scholar
Block, K. P., Soemitro, S., Heywood, B. W. & Harper, A. E. (1985). Journal of Nutrition 115, 15501561.CrossRefGoogle Scholar
Busboom, J. A., Merkel, R. A. & Bergen, W. G. (1983). Journal of Animal Science 57, Suppl. 1, 189.Google Scholar
Cappucino, C. C., Kadowaki, H. & Knox, W. E. (1978). Enzyme 23, 328338.CrossRefGoogle Scholar
Early, R. J., Thompson, J. R., Christopherson, R. J. & Sedgwick, G. W. (1984). Canadian Journal of Animal Science 64, Suppl.276277.CrossRefGoogle Scholar
Featherston, W. R. & Horn, G. W. (1973). Journal of Nutrition 103, 757765.CrossRefGoogle Scholar
Gillim, S. E., Paxton, R., Cook, G. A. & Harris, R. A. (1983). Biochemical and Biophysical Research Communications 111, 7481.CrossRefGoogle Scholar
Goodwin, G. W., Gibboney, W., Paxton, R., Harris, R. A. & Lemons, J. A. (1987). Biochemical Journal 242, 305308.CrossRefGoogle Scholar
Harper, A. E., Miller, R. H. & Block, K. P. (1984). Annual Review of Nutrition 4, 409454.CrossRefGoogle Scholar
Harris, R. A., Paxton, R., Goodwin, G. W., Kuntz, M. J., Shimomura, Y. & Han, A. (1986). Biochemical Society Transactions 14, 10051008.CrossRefGoogle Scholar
Harris, R. A., Paxton, R., Powell, S. M., Goodwin, G. W., Kuntz, M. J. & Han, A. C. (1985). Advances in Enzyme Regulation 25, 219237.CrossRefGoogle Scholar
Khatra, B. S., Chawla, R. K., Sewell, C. W. & Rudman, D. (1977). Journal of Clinical Investigation 59, 558564.CrossRefGoogle Scholar
Lindsay, D. B. & Buttery, P. J. (1980). In Protein Deposition in Animals pp. 125145 [Buttery, P. J. and Lindsay, D. B., editors]. London: Butterworth.CrossRefGoogle Scholar
Nissen, S. & Ostaszewski, P. (1985). British Journal of Nutrition 54, 705712.Google Scholar
Papet, I., Breuillé, D. & Arnal, M. (1987). Reproduction, Nutrition, Développement 27, (1B), 293294.CrossRefGoogle Scholar
Papet, I., Breuillé, D., Glomot, F. & Arnal, M. (1988). Journal of Nutrition (In the Press).Google Scholar
Patureau-Mirand, P., Prugnaud, J. & Pion, R. (1971). Xth Congrès de Zootechnie. Paris: F.E.Z.Google Scholar
Shinnick, F. L. & Harper, A. E. (1976). Biochimica Biophysica Acta 437, 477486.CrossRefGoogle Scholar
Snell, K. & Duff, D. A. (1985). Biochemical Journal 225, 737743.CrossRefGoogle Scholar
Van Veen, L. C. P., Teng, C., Hay, W. W., Meschia, G. Jr. & Battaglia, F. C. (1987). Metabolism 36, 4853.CrossRefGoogle Scholar
Wagenmakers, A. J. M., Schepens, J. T. G., Veldhuizen, J. A. M. & Veerkamp, J. H. (1984). Biochemical Journal 220, 273281.CrossRefGoogle Scholar
Wijayasinghe, M. S., Milligan, L. P. & Thompson, J. R. (1983). Bioscience Reports 3, 11331140.CrossRefGoogle Scholar
Wohlhueter, R. M. & Harper, A. E. (1970). Journal of Biological Chemistry 245, 23912401.CrossRefGoogle Scholar