Skip to main content Accessibility help

Influence of habitual physical activity on gastric emptying in healthy males and relationships with body composition and energy expenditure

  • Katy M. Horner (a1) (a2), Nuala M. Byrne (a1) (a3), Geoffrey J. Cleghorn (a4) and Neil A. King (a1)


Although a number of studies have examined the role of gastric emptying (GE) in obesity, the influences of habitual physical activity level, body composition and energy expenditure (EE) on GE have received very little consideration. In the present study, we compared GE in active and inactive males, and characterised relationships with body composition (fat mass and fat-free mass) and EE. A total of forty-four males (active n 22, inactive n 22; BMI 21–36 kg/m2; percentage of fat mass 9–42 %) were studied, with GE of a standardised (1676 kJ) pancake meal being assessed by the [13C]octanoic acid breath test, body composition by air displacement plethysmography, RMR by indirect calorimetry, and activity EE (AEE) by accelerometry. The results showed that GE was faster in active compared with inactive males (mean half-time (t 1/2): active 157 (sd 18) and inactive 179 (sd 21) min, P< 0·001). When data from both groups were pooled, GE t 1/2 was associated with percentage of fat mass (r 0·39, P< 0·01) and AEE (r − 0·46, P< 0·01). After controlling for habitual physical activity status, the association between AEE and GE remained, but not that for percentage of fat mass and GE. BMI and RMR were not associated with GE. In summary, faster GE is considered to be a marker of a habitually active lifestyle in males, and is associated with a higher AEE level and a lower percentage of fat mass. The possibility that GE contributes to a gross physiological regulation (or dysregulation) of food intake with physical activity level deserves further investigation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Influence of habitual physical activity on gastric emptying in healthy males and relationships with body composition and energy expenditure
      Available formats

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Influence of habitual physical activity on gastric emptying in healthy males and relationships with body composition and energy expenditure
      Available formats

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Influence of habitual physical activity on gastric emptying in healthy males and relationships with body composition and energy expenditure
      Available formats


Corresponding author

* Corresponding author: K. M. Horner, email


Hide All
1 Horowitz, M & Fraser, R (1993) Disordered gastric motor function in diabetes mellitus. Diabetelogia 36, 857862.
2 Delgado-Aros, S, Camilleri, M, Cremonini, F, et al. (2004) Contributions of gastric volumes and gastric emptying to meal size and postmeal symptoms in functional dyspepsia. Gastroenterology 127, 16851694.
3 Delgado-Aros, S, Camilleri, M, Castillo, EJ, et al. (2005) Effect of gastric volume or emptying on meal-related symptoms after liquid nutrients in obesity: a pharmacologic study. Clin Gastroenterol Hepatol 3, 9971006.
4 Hellström, PM (2013) Satiety signals and obesity. Curr Opin Gastroenterol 29, 222227.
5 Hellmig, S, Von Schöning, F, Gadow, C, et al. (2006) Gastric emptying time of fluids and solids in healthy subjects determined by 13C breath tests: influence of age, sex and body mass index. J Gastroenterol Hepatol 21, 18321838.
6 Wright, RA, Krinsky, S, Fleeman, C, et al. (1983) Gastric emptying and obesity. Gastroenterology 84, 747751.
7 Näslund, E, Gryback, P, Backman, L, et al. (1998) Distal small bowel hormones: correlation with fasting antroduodenal motility and gastric emptying. Dig Dis Sci 43, 945952.
8 Mathus-Vliegen, E, Leeuwen, M & Roolker, W (2005) Gastric emptying, CCK release, and satiety in weight-stable obese subjects. Dig Dis Sci 50, 714.
9 Hunt, J, Cash, R & Newland, P (1975) Energy density of food, gastric emptying, and obesity. Lancet ii, 905906.
10 Jackson, SJ, Leahy, FE, McGowan, AA, et al. (2004) Delayed gastric emptying in the obese: an assessment using the non-invasive 13C-octanoic acid breath test. Diabetes Obes Metab 6, 264270.
11 Hutson, WR & Wald, A (1993) Obesity and weight reduction do not influence gastric emptying and antral motility. Am J Gastroenterol 88, 14051409.
12 Verdich, C, Madsen, JL, Toubro, S, et al. (2000) Effect of obesity and major weight reduction on gastric emptying. Int J Obes Relat Metab Disord 24, 899905.
13 Vazquez Roque, MI, Camilleri, M, Stephens, DA, et al. (2006) Gastric sensorimotor functions and hormone profile in normal weight, overweight, and obese people. Gastroenterology 131, 17171724.
14 Maddox, A, Horowitz, M, Wishart, J, et al. (1989) Gastric and oesophageal emptying in obesity. Scand J Gastroenterol 24, 593598.
15 Horowitz, M, Collins, PJ, Cook, DJ, et al. (1983) Abnormalities of gastric emptying in obese patients. Int J Obes 7, 415421.
16 Meyer-Gerspach, AC, Wolnerhanssen, B, Beglinger, B, et al. (2014) Gastric and intestinal satiation in obese and normal weight healthy people. Physiol Behav 129, 265271.
17 Park, M-I & Camilleri, M (2005) Gastric motor and sensory functions in obesity. Obesity 13, 491500.
18 Ahima, RS & Lazar, MA (2013) The health risk of obesity – better metrics imperative. Science 341, 856858.
19 Blair, SN (2009) Physical inactivity: the biggest public health problem of the 21st century. Br J Sports Med 43, 12.
20 Blundell, JE, Caudwell, P, Gibbons, C, et al. (2011) Body composition and appetite: fat-free mass (but not fat mass or BMI) is positively associated with self-determined meal size and daily energy intake in humans. Br J Nutr 107, 445449.
21 Dyck, DJ (2005) Leptin sensitivity in skeletal muscle is modulated by diet and exercise. Exerc Sport Sci Rev 33, 189194.
22 Steinberg, GR, Smith, AC, Wormald, S, et al. (2004) Endurance training partially reverses dietary-induced leptin resistance in rodent skeletal muscle. Am J Physiol Endocrinol Metab 286, E57E63.
23 Cakir, B, Kasimay, O, Devseren, E, et al. (2007) Leptin inhibits gastric emptying in rats: role of CCK receptors and vagal afferent fibers. Physiol Res 56, 315322.
24 DeLany, JP, Kelley, DE, Hames, KC, et al. (2013) High energy expenditure masks low physical activity in obesity. Int J Obes 37, 10061011.
25 Carrio, I, Estorch, M, Serra-Grima, R, et al. (1989) Gastric emptying in marathon runners. Gut 30, 152155.
26 Horner, KM, Byrne, NM, Cleghorn, GJ, et al. (2011) The effects of weight loss strategies on gastric emptying and appetite control. Obes Rev 12, 935951.
27 Geraedts, MCP, Troost, FJ & Saris, WHM (2011) Gastrointestinal targets to modulate satiety and food intake. Obes Rev 12, 470477.
28 Hasler, WL (2009) Methods of gastric electrical stimulation and pacing: a review of their benefits and mechanisms of action in gastroparesis and obesity. Neurogastroenterol Motil 21, 229243.
29 Janssen, P, Vanden Berghe, P, Verschueren, S, et al. (2011) Review Article: the role of gastric motility in the control of food intake. Aliment Pharmacol Ther 33, 880894.
30 Steinert, RE, Meyer-Gerspach, AC & Beglinger, C (2012) The role of the stomach in the control of appetite and the secretion of satiation peptides. Am J Physiol Endocrinol Metab 302, E666E673.
31 Long, SJ, Hart, K & Morgan, LM (2002) The ability of habitual exercise to influence appetite and food intake in response to high- and low-energy preloads in man. Br J Nutr 87, 517523.
32 Horner, KM, Byrne, NM, Cleghorn, GJ, et al. (2014) Reproducibility of gastric emptying in overweight and obese males. Clin Nutr 33, 684688.
33 Weir, JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109, 19.
34 Roffey, DM, Byrne, NM & Hills, AP (2006) Day-to-day variance in measurement of resting metabolic rate using ventilated-hood and mouthpiece & nose-clip indirect calorimetry systems. J Parenter Enteral Nutr 30, 426432.
35 Goris, AH, Meijer, EP, Kester, A, et al. (2001) Use of a triaxial accelerometer to validate reported food intakes. Am J Clin Nutr 73, 549553.
36 Sasaki, JE, John, D & Freedson, PS (2011) Validation and comparison of ActiGraph activity monitors. J Sci Med Sport 14, 411416.
37 Peeters, G, van Gellecum, Y, Ryde, G, et al. (2013) Is the pain of activity log-books worth the gain in precision when distinguishing wear and non-wear time for tri-axial accelerometers? J Sci Med Sport 12, S1440S2440.
38 Matthews, CE, Hagströmer, M, Pober, DM, et al. (2012) Best practices for using physical activity monitors in population-based research. Med Sci Sports Exerc 44, S68S76.
39 Mâsse, LC, Fuemmeler, BF, Anderson, CB, et al. (2005) Accelerometer data reduction: a comparison of four reduction algorithms on select outcome variables. Med Sci Sports Exerc 37, S544S554.
40 Trost, SG, McIver, KL & Pate, RR (2005) Conducting accelerometer-based activity assessments in field-based research. Med Sci Sports Exerc 37, S531S543.
41 Duval, K, Strychar, I, Cyr, M-J, et al. (2008) Physical activity is a confounding factor of the relation between eating frequency and body composition. Am J Clin Nutr 88, 12001205.
42 Ghoos, YF, Maes, BD, Geypens, BJ, et al. (1993) Measurement of gastric emptying rate of solids by means of a carbon-labeled octanoic acid breath test. Gastroenterology 104, 16401647.
43 Shreeve, WW, Cerasi, E & Luft, R (1970) Metabolism of [2-14C] pyruvate in normal, acromegalic and HGH-treated human subjects. Acta Endocrinol (Copenh) 65, 155169.
44 Haycock, GB, Schwartz, GJ & Wisotsky, DH (1978) Geometric method for measuring body surface area: a height–weight formula validated in infants, children, and adults. J Pediatr 93, 6266.
45 Schommartz, B, Ziegler, D & Schadewaldt, P (1998) Significance of diagnostic parameters in [13C]octanoic acid gastric emptying breath tests. Isotopes Environ Health Stud 33, 135143.
46 Harris, JA & Benedict, FG (1918) A biometric study of human basal metabolism. Proc Natl Acad Sci U S A 4, 370373.
47 Shimamoto, C, Hirata, I, Hiraike, Y, et al. (2002) Evaluation of gastric motor activity in the elderly by electrogastrography and the [13]C-acetate breath test. Gerontology 48, 381386.
48 Seimon, RV, Brennan, IM, Russo, A, et al. (2013) Gastric emptying, mouth-to-cecum transit, and glycemic, insulin, incretin, and energy intake responses to a mixed-nutrient liquid in lean, overweight, and obese males. Am J Physiol Endocrinol Metab 304, E294E300.
49 Blundell, JE, Caudwell, P, Gibbons, C, et al. (2012) Role of resting metabolic rate and energy expenditure in hunger and appetite control: a new formulation. Dis Model Mech 5, 608613.
50 Edholm, OG, Fletcher, JG, Widdowson, EM, et al. (1955) The energy expenditure and food intake of individual men. Br J Nutr 9, 286300.
51 Pilichiewicz, AN, Chaikomin, R, Brennan, IM, et al. (2007) Load-dependent effects of duodenal glucose on glycemia, gastrointestinal hormones, antropyloroduodenal motility, and energy intake in healthy men. Am J Physiol Endocrinol Metab 293, 743753.
52 French, SJ, Murray, B, Rumsey, RDE, et al. (1993) Is cholecystokinin a satiety hormone? Correlations of plasma cholecystokinin with hunger, satiety and gastric emptying in normal volunteers. Appetite 21, 95104.
53 Schirra, J, Katschinski, M, Weidmann, C, et al. (1996) Gastric emptying and release of incretin hormones after glucose ingestion in humans. J Clin Invest 97, 92103.
54 King, NA, Tremblay, A & Blundell, JE (1997) Effects of exercise on appetite control: implications for energy balance. Med Sci Sports Exerc 29, 10761089.
55 Blundell, JE (2011) Physical activity and appetite control: can we close the energy gap? Nutr Bull 36, 356366.
56 Harris, A, Lindeman, AK & Martin, BJ (1991) Rapid orocecal transit in chronically active persons with high energy intake. J Appl Physiol 70, 15501553.
57 Lauer, MS (2009) Autonomic function and prognosis. Cleve Clin J Med 76, S18S22.
58 Levin, F, Edholm, T, Schmidt, PT, et al. (2006) Ghrelin stimulates gastric emptying and hunger in normal-weight humans. J Clin Endocrinol Metab 91, 32963302.
59 Jones, KL, Russo, A, Berry, MK, et al. (2002) A longitudinal study of gastric emptying and upper gastrointestinal symptoms in patients with diabetes mellitus. Am J Med 113, 449455.
60 Kaji, M, Nomura, M, Tamura, Y, et al. (2007) Relationships between insulin resistance, blood glucose levels and gastric motility: an electrogastrography and external ultrasonography study. J Med Invest 54, 168176.
61 Boulé, NG, Weisnagel, SJ, Lakka, TA, et al. (2005) Effects of exercise training on glucose homeostasis: The HERITAGE Family Study. Diabetes Care 28, 108114.
62 Martins, C, Kulseng, B, King, NA, et al. (2010) The effects of exercise-induced weight loss on appetite-related peptides and motivation to eat. J Clin Endocrinol Metab 95, 16091616.
63 van de Casteele, M, Luypaerts, A, Geypens, B, et al. (2003) Oxidative breakdown of octanoic acid is maintained in patients with cirrhosis despite advanced disease. Neurogastroenterol Motil 15, 113120.
64 Keller, J, Andresen, V, Wolter, J, et al. (2009) Influence of clinical parameters on the results of 13C-octanoic acid breath tests: examination of different mathematical models in a large patient cohort. Neurogastroenterol Motil 21, 10391083.
65 Cardoso-Júnior, A, Gonzaga Vaz Coelho, L, Savassi-Rocha, P, et al. (2007) Gastric emptying of solids and semi-solids in morbidly obese and non-obese subjects: an assessment using the 13C-acetic acid breath tests. Obes Surg 17, 236241.
66 Plasqui, G & Westerterp, KR (2007) Physical activity assessment with accelerometers: an evaluation against doubly labeled water. Obesity 15, 23712379.
67 Homko, CJ, Zamora, LC, Boden, G, et al. (2014) Bodyweight in patients with idiopathic gastroparesis: roles of symptoms, caloric intake, physical activity, and body metabolism. Neurogastroenterol Motil 26, 283289.


Influence of habitual physical activity on gastric emptying in healthy males and relationships with body composition and energy expenditure

  • Katy M. Horner (a1) (a2), Nuala M. Byrne (a1) (a3), Geoffrey J. Cleghorn (a4) and Neil A. King (a1)


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed