Skip to main content Accessibility help
×
×
Home

Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations

  • Gunjan Goel (a1), Harinder P. S. Makkar (a1) and Klaus Becker (a1)
Abstract

Bromochloromethane (BCM), a halogenated methane analogue, was evaluated for its anti-methanogenic activity in both batch and continuous fermentation systems. For batch fermentation, a roughage-based substrate was incubated with mixed rumen microflora for 24 h at two concentrations of BCM (5 and 10 μm). A 89–94 % reduction in methane was obtained in terms of volume and truly degraded substrate (TDS; P < 0·05). The partitioning factor (an index of efficiency of microbial protein production; expressed as mg TDS/ml net gas produced) increased from 3·55 to 3·73 (P < 0·05), while the acetate:propionate proportion decreased from 2·80 to 2·22 (P < 0·05). A complete inhibition of methanogens was associated with a 48 % decrease in Ruminococcus flavefaciens, a 68 % increase in Fibrobacter succinogenes and a 30 % increase in rumen fungi when quantified using qPCR. The continuous fermentation was carried out using the roughage-based substrate in four fermenters, two fermenters being control and the other two fed with BCM (5 μm) once in a day, for nine consecutive days. A persistent effect of BCM on methane reduction (85–90 %) was obtained throughout the study (P < 0·05) with no effect on gas production, SCFA production, acetate:propionate proportion, true degradability and efficiency of microbial mass synthesis (P>0·05). The complete inhibition of methane resulted in a significant decrease in R. flavefaciens and methanogens (P < 0·05) and an increase in fungal population (P < 0·05), while there was no effect on total bacterial and F. succinogenes populations (P>0·05). The batch fermentation confirms the anti-methanogenic activity of BCM, while the continuous fermentation indicates the persistency of this effect under in vitro conditions.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Inhibition of methanogens by bromochloromethane: effects on microbial communities and rumen fermentation using batch and continuous fermentations
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr Harinder P. S. Makkar, fax +49 71145923702, email makkar@uni-hohenheim.de
References
Hide All
1 Johnson, KA & Johnson, DE (1995) Methane emissions from cattle. J Anim Sci 73, 24832492.
2 Jouany, JP & Martin, C (2003) Enteric methane (and CO2) emissions by ruminants CarboEurope-GHG, September, 4th and 5th 2003, Clermont-Ferrand. http://gaia.agraria.unitus.it/ceuroghg/cftalk9.pdf.
3 Hegarty, RS (1999) Reducing rumen methane emissions through elimination of rumen protozoa. Aust J Agr Res 50, 1321.
4 Sharma, RK (2005) Nutritional strategies for reducing methane production by ruminants – a review. J Res SKUAST-J 4, 112.
5 Wood, JM, Kennedy, FS & Wolfe, RS (1968) The reaction of multi-halogenated hydrocarbons with free and bound reduced vitamin B12. Biochemistry 7, 17071713.
6 Chalupa, W (1977) Manipulating rumen fermentation. J Anim Sci 46, 585599.
7 May, C, Payne, AL, Stewart, PL, et al. (1995) A delivery system for agents International Patent Application No. PCT/AU95/00733.
8 Menke, KH & Steingass, H (1988) Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid. Anim Res Dev 28, 755.
9 Makkar, HPS, Blümmel, M & Becker, K (1995) Formation of complexes between polyvinyl pyrrolidones or polyethylene glycols and tannins, and their implication in gas production and true digestibility in in vitro techniques. Br J Nutr 73, 897913.
10 Goel, G, Makkar, HPS & Becker, K (2008) Effects of Sesbania sesban and Carduus pycnocephalus leaves and Fenugreek (Trigonella foenum-graecum L.) seeds and their extracts on partitioning of nutrients from roughage- and concentrate-based feeds to methane. Anim Feed Sci Technol (In the Press).
11 Demeyer, DI (1991) Quantitative aspects of microbial metabolism in the rumen and hindgut. In Rumen Microbial Metabolism and Ruminant Digestion, pp. 217237 [Jouany, JP, editor]. Paris: INRA.
12 Denman, SE & McSweeney, CS (2006) Development of a real-time PCR assay for monitoring anaerobic fungal and cellulolytic bacterial populations within the rumen. FEMS Microbiol Ecol 58, 572582.
13 Denman, SE, Tomkins, NW & McSweeney, CS (2007) Quantitation and diversity analysis of ruminal methanogenic populations in response to the antimethanogenic compound bromochloromethane. FEMS Microbiol Ecol 62, 313322.
14 Goel, G, Makkar, HPS & Becker, K (2008) Changes in microbial population, methanogenesis and rumen fermentation in response to saponin rich fractions of different plant materials. J Appl Microbiol 105, 770777.
15 Selje, N, Hoffmann, EM & Becker, K (2006) Fermentation parameters and maintenance of rumen protozoa under different feeding regimes in a continuous fermenter system. Proc Soc Nutr Physiol 15, 95.
16 Stanier, G & Davies, A (1981) Effects of the antibiotic monensin and an inhibitor of methanogenesis on in vitro continuous rumen fermentations. Br J Nutr 45, 567578.
17 Sawyer, MS, Hoover, WH & Sniffen, CJ (1974) Effects of a ruminal methane inhibitor on growth and energy metabolism in the ovine. J Anim Sci 38, 908914.
18 Horton, GM (1980) Use of feed additives to reduce ruminal methane production and deaminase activity in steers. J Anim Sci 50, 11601164.
19 McCrabb, GJ, Berger, KT, Magner, T, et al. (1997) Inhibiting methane production in Brahman cattle by dietary supplementation with a novel compound and the effects of growth. Aust J Agric Res 48, 323329.
20 Ungerfeld, EM, Rust, SR, Boone, DR, et al. (2004) Effects of several inhibitors on pure cultures of ruminal methanogens. J Appl Microbiol 97, 520526.
21 Mohammed, N, Ajisaka, N, Lila, Z, et al. (2004) Effect of Japanese horseradish oil on methane production and ruminal fermentation in vitro and in steers. J Anim Sci 82, 18391846.
22 Mwenya, B, Santoso, B, Sar, C, et al. (2004) Effects of including β1-4 galacto-oligosaccharides, lactic acid bacteria or yeast culture on methanogenesis as well as energy and nitrogen metabolism in sheep. Anim Feed Sci Technol 115, 313326.
23 Macfarlane, S & Macfarlane, GT (2003) Regulation of short-chain fatty acid production. Proc Nutr Soc 62, 6772.
24 Voet, D & Voet, JG (1995) Biochemistry. New York: John Wiley and Sons, Inc.
25 Rufener, WH & Wolin, MJ (1968) Effect of CC14 on CH4 volatile acid production in continuous culture of rumen organisms and sheep rumen. Appl Microbiol 16, 19551956.
26 van Nevel, CJ, Henderickx, HK, Demeyer, DI, et al. (1969) Effect of chloral hydrate on methane and propionic acid in the rumen. Appl Microbiol 17, 695.
27 Trei, JE, Scott, GC & Parish, RC (1972) Influence of methane inhibition on energetic efficiency of lambs. J Anim Sci 34, 510.
28 McSweeney, CS & McCrabb, GJ (2002) Inhibition of rumen methanogenesis and its effects on feed intake, digestion, and animal production. In Greenhouse Gases and Animal Agriculture: Proceedings of the 1st International Conference on Greenhouse Gases and Animal Agriculture, pp. 129138 [Takashaki, J, Young, B, Kreuzer, M and Solvia, CR, editors]. New York: Elsevier Health Sciences.
29 Lalu, K, Bhar, R & Mandal, AB (2007) Effect of dietary addition of bromochloromethane on nutrient utilization and nitrogen balance in Muzaffarnagari rams. Anim Nutr Feed Technol 7, 7378.
30 Stieb, M & Schink, B (1986) Anaerobic degradation of isovalerate by a defined methanogenic coculture. Arch Microbiol 144, 291295.
31 Muralidharan, V, Rinker, KD, Hirsh, IS, et al. (1997) Hydrogen transfer between methanogens and fermentative heterotrophs in hyperthermophilic cocultures. Biotechnol Bioeng 56, 268278.
32 Guo, YQ, Liu, JX, Zhu, WY, et al. (2007) Shifts of rumen microbial population detected by real-time PCR when methanogenesis is inhibited. J Anim Feed Sci 16, 107112.
33 Wolin, MJ, Miller, TL & Stewart, CS (1997) Microbe–microbe interactions. In The Rumen Microbial Ecosystem, 2nd ed. pp. 467491 [Hobson, PN and Stewart, CS, editors]. New York: Blackie Academic and Professional.
34 Allison, MJ, Bryant, MP & Doetsch, RN (1962) Studies on the metabolic function of branched-chain volatile fatty acids, growth factors for ruminococci. J Bacteriol 83, 523532.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed