Skip to main content Accessibility help
×
Home

Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study

  • Viktoria Knaze (a1), Raul Zamora-Ros (a1), Leila Luján-Barroso (a1), Isabelle Romieu (a2), Augustin Scalbert (a2), Nadia Slimani (a2), Elio Riboli (a3), Caroline T. M. van Rossum (a4), H. Bas Bueno-de-Mesquita (a4) (a5), Antonia Trichopoulou (a6) (a7), Vardis Dilis (a6) (a7), Konstantinos Tsiotas (a6), Guri Skeie (a8), Dagrun Engeset (a8), J. Ramón Quirós (a9), Esther Molina (a10) (a11), José María Huerta (a11) (a12), Francesca Crowe (a13), Elisabet Wirfäl (a14), Ulrika Ericson (a14), Petra H. M. Peeters (a3) (a15), Rudolf Kaaks (a16), Birgit Teucher (a16), Gerd Johansson (a17), Ingegerd Johansson (a18), Rosario Tumino (a19), Heiner Boeing (a20), Dagmar Drogan (a20), Pilar Amiano (a11) (a21), Amalia Mattiello (a22), Kay-Tee Khaw (a23), Robert Luben (a23), Vittorio Krogh (a24), Eva Ardanáz (a11) (a25), Carlotta Sacerdote (a26), Simonetta Salvini (a27), Kim Overvad (a28), Anne Tjønneland (a29), Anja Olsen (a29), Marie-Christine Boutron-Ruault (a30) (a31), Guy Fagherazzi (a30) (a31), Florence Perquier (a30) (a31) and Carlos A. González (a1)...

Abstract

Epidemiological studies suggest health-protective effects of flavan-3-ols and their derived compounds on chronic diseases. The present study aimed to estimate dietary flavan-3-ol, proanthocyanidin (PA) and theaflavin intakes, their food sources and potential determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) calibration cohort. Dietary data were collected using a standardised 24 h dietary recall software administered to 36 037 subjects aged 35–74 years. Dietary data were linked with a flavanoid food composition database compiled from the latest US Department of Agriculture and Phenol-Explorer databases and expanded to include recipes, estimations and retention factors. Total flavan-3-ol intake was the highest in UK Health-conscious men (453·6 mg/d) and women of UK General population (377·6 mg/d), while the intake was the lowest in Greece (men: 160·5 mg/d; women: 124·8 mg/d). Monomer intake was the highest in UK General population (men: 213·5 mg/d; women: 178·6 mg/d) and the lowest in Greece (men: 26·6 mg/d in men; women: 20·7 mg/d). Theaflavin intake was the highest in UK General population (men: 29·3 mg/d; women: 25·3 mg/d) and close to zero in Greece and Spain. PA intake was the highest in Asturias (men: 455·2 mg/d) and San Sebastian (women: 253 mg/d), while being the lowest in Greece (men: 134·6 mg/d; women: 101·0 mg/d). Except for the UK, non-citrus fruits (apples/pears) were the highest contributors to the total flavan-3-ol intake. Tea was the main contributor of total flavan-3-ols in the UK. Flavan-3-ol, PA and theaflavin intakes were significantly different among all assessed groups. This study showed heterogeneity in flavan-3-ol, PA and theaflavin intake throughout the EPIC countries.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Intake estimation of total and individual flavan-3-ols, proanthocyanidins and theaflavins, their food sources and determinants in the European Prospective Investigation into Cancer and Nutrition (EPIC) study
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: R. Zamora-Ros, fax +34 932607787, email rzamora@iconcologia.net

References

Hide All
1Santos-Buelga, C & Scalbert, A (2000) Proanthocyanidins and tannin-like compounds – nature, occurence, dietary intake and effects on nutrition and health. J Sci Food Agric 80, 10941117.
2de la Rosa, Laura A, Alvarez-Parrilla, E and González-Aguilar, GA (editors) (2010) Fruit and Vegetable Phytochemicals, 1st ed.Ames, IA: Blackwell Publishing.
3Manach, C, Williamson, G, Morand, C, et al. (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81, 230S242S.
4Aron, PM & Kennedy, JA (2007) Compositional investigation of phenolic polymers isolated from Vitis vinifera L. Cv. Pinot noir during fermentation. J Agric Food Chem 55, 56705680.
5Hellstrom, JK, Torronen, AR & Mattila, PH (2009) Proanthocyanidins in common food products of plant origin. J Agric Food Chem 57, 78997906.
6Auger, C, Al-Awwadi, N, Bornet, A, et al. (2004) Catechins and procyanidins in Mediterranean diets. Food Res Int 37, 233245.
7Williamson, G & Manach, C (2005) Bioavailability and bioefficacy of polyphenols in humans. Am J Clin Nutr 81, 243S255S.
8Gu, L, Kelm, MA, Hammerstone, JF, et al. (2004) Concentrations of proanthocyanidins in common foods and estimations of normal consumption. J Nutr 134, 613617.
9Crozier, A, Lean, MEJ, McDonald, MS, et al. (1997) Quantitative analysis of the flavonoid content of commercial tomatoes, onions, lettuce, and celery. J Agric Food Chem 45, 590595.
10Rickman, JC, Barrett, DM & Bruhn, CM (2007) Nutritional comparison of fresh, frozen and canned fruits and vegetables. Part 1. Vitamins C and B and phenolic compounds. J Sci Food Agric 87, 930944.
11Beecher, GR (2003) Overview of dietary flavonoids: nomenclature, occurrence and intake. J Nutr 133, 3248S3254S.
12Ramiro-Puig, E & Castell, M (2009) Cocoa: antioxidant and immunomodulator. Br J Nutr 101, 931940.
13Suzuki, J, Isobe, M, Morishita, R, et al. (2009) Tea polyphenols regulate key mediators on inflammatory cardiovascular diseases. Mediators Inflamm 2009, article ID 494928; Epublication 19 July 2009.
14Yang, CS, Wang, X, Lu, G, et al. (2009) Cancer prevention by tea: animal studies, molecular mechanisms and human relevance. Nat Rev Cancer 9, 429439.
15Hooper, L, Kroon, PA, Rimm, EB, et al. (2008) Flavonoids, flavonoid-rich foods, and cardiovascular risk: a meta-analysis of randomized controlled trials. Am J Clin Nutr 88, 3850.
16Williamson, G, Sies, H, Heber, D, et al. (2009) Functional foods for health promotion: state-of-the-science on dietary flavonoids. Extended abstracts from the 12th Annual Conference on Functional Foods for Health Promotion, April 2009. Nutr Rev 67, 736743.
17Cos, P, de Bruyne, T, Hermans, N, et al. (2004) Proanthocyanidins in health care: current and new trends. Curr Med Chem 11, 13451359.
18Schroeter, H, Heiss, C, Balzer, J, et al. (2006) ( − )-Epicatechin mediates beneficial effects of flavanol-rich cocoa on vascular function in humans. Proc Natl Acad Sci U S A 103, 10241029.
19Monagas, M, Urpi-Sarda, M, Sánchez-Patán, F, et al. (2010) Insights into the metabolism and microbial biotransformation of dietary flavan-3-ols and the bioactivity of their metabolites. Food Funct 1, 233253.
20Rossi, M, Negri, E, Parpinel, M, et al. (2010) Proanthocyanidins and the risk of colorectal cancer in Italy. Cancer Causes Control 21, 243250.
21Rossi, M, Rosato, V, Bosetti, C, et al. (2010) Flavonoids, proanthocyanidins, and the risk of stomach cancer. Cancer Causes Control 21, 15971604.
22Chun, OK, Chung, SJ & Song, WO (2007) Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 137, 12441252.
23Zamora-Ros, R, Andres-Lacueva, C, Lamuela-Raventós, RM, et al. (2010) Estimation of dietary sources and flavonoid intake in a Spanish adult population (EPIC-Spain). J Am Diet Assoc 110, 390398.
24Slimani, N, Kaaks, R, Ferrari, P, et al. (2002) European Prospective Investigation into Cancer and Nutrition (EPIC) calibration study: rationale, design and population characteristics. Public Health Nutr 5, 11251145.
25Slimani, N, Ferrari, P, Ocke, M, et al. (2000) Standardization of the 24-hour diet recall calibration method used in the European Prospective Investigation into Cancer and Nutrition (EPIC): general concepts and preliminary results. Eur J Clin Nutr 54, 900917.
26Slimani, N, Deharveng, G, Charrondiere, RU, et al. (1999) Structure of the standardized computerized 24-h diet recall interview used as reference method in the 22 centers participating in the EPIC project. European Prospective Investigation into Cancer and Nutrition. Comput Methods Programs Biomed 58, 251266.
27Brustad, M, Skeie, G, Braaten, T, et al. (2003) Comparison of telephone vs face-to-face interviews in the assessment of dietary intake by the 24 h recall EPIC SOFT program – the Norwegian calibration study. Eur J Clin Nutr 57, 107113.
28Kaaks, R, Plummer, M, Riboli, E, et al. (1994) Adjustment for bias due to errors in exposure assessments in multicenter cohort studies on diet and cancer: a calibration approach. Am J Clin Nutr 59, 245S2250.
29Kaaks, R, Riboli, E & van Staveren, W (1995) Calibration of dietary intake measurements in prospective cohort studies. Am J Epidemiol 142, 548556.
30Kaaks, R & Riboli, E (1997) Validation and calibration of dietary intake measurements in the EPIC project: methodological considerations. European Prospective Investigation into Cancer and Nutrition. Int J Epidemiol 26, Suppl. 1, S15S25.
31Haftenberger, M, Schuit, AJ, Tormo, MJ, et al. (2002) Physical activity of subjects aged 50–64 years involved in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr 5, 11631176.
32Haftenberger, M, Lahmann, PH, Panico, S, et al. (2002) Overweight, obesity and fat distribution in 50- to 64-year-old participants in the European Prospective Investigation into Cancer and Nutrition (EPIC). Public Health Nutr 5, 11471162.
33Riboli, E, Hunt, KJ, Slimani, N, et al. (2002) European Prospective Investigation into Cancer and Nutrition (EPIC): study populations and data collection. Public Health Nutr 5, 11131124.
34Slimani, N, Fahey, M, Welch, AA, et al. (2002) Diversity of dietary patterns observed in the European Prospective Investigation into Cancer and Nutrition (EPIC) project. Public Health Nutr 5, 13111328.
35United States Department of Agriculture (2007) USDA Database for the Flavonoid Content of Selected Foods, release 2.1 ed.Beltsville, MD: USDA.
36United States Department of Agriculture (2004) USDA Database for the Proanthocyanidin Content of Selected Foods. Beltsville, MD: USDA.
37Neveu, V, Perez-Jimenez, J & Vos, F, et al. (2010) Phenol-Explorer: an online comprehensive database on polyphenol contents in food>. Database (Oxf), version 1.5.2. http://www.phenol-explorer.eu.
38Arts, IC, van de Putte, B & Hollman, PC (2000) Catechin contents of foods commonly consumed in The Netherlands. 1. Fruits, vegetables, staple foods, and processed foods. J Agric Food Chem 48, 17461751.
39Zamora-Ros, R, Knaze, V, Lujan-Barroso, L, et al. (2011) Estimation of the intake of anthocyanidins and their food sources in the European Prospective Investigation into Cancer and Nutrition (EPIC) study. Br J Nutr 106, 10901099.
40Zamora-Ros, R, Knaze, V, Lujan-Barroso, L, et al. (2011) Estimated dietary intakes of flavonols, flavanones and flavones in the European Prospective Investigation into Cancer and Nutrition (EPIC) 24 hour dietary recall cohort. Br J Nutr 106, 19151925.
41Rechner, AR, Wagner, E, van Buren, L, et al. (2002) Black tea represents a major source of dietary phenolics among regular tea drinkers. Free Radic Res 36, 11271135.
42Levi, F, Chatenoud, L, Bertuccio, P, et al. (2009) Mortality from cardiovascular and cerebrovascular diseases in Europe and other areas of the world: an update. Eur J Cardiovasc Prev Rehabil 16, 333350.
43Henning, SM, Niu, Y, Lee, NH, et al. (2004) Bioavailability and antioxidant activity of tea flavanols after consumption of green tea, black tea, or a green tea extract supplement. Am J Clin Nutr 80, 15581564.
44Auger, C, Mullen, W, Hara, Y, et al. (2008) Bioavailability of polyphenon E flavan-3-ols in humans with an ileostomy. J Nutr 138, 1535S1542S.
45Linseisen, J, Welch, AA, Ocke, M, et al. (2009) Dietary fat intake in the European Prospective Investigation into Cancer and Nutrition: results from the 24-h dietary recalls. Eur J Clin Nutr 63, Suppl. 4, S61S80.
46Lopez-Miranda, J, Perez-Jimenez, F, Ros, E, et al. (2010) Olive oil and health: summary of the II international Aconference on olive oil and health consensus report, Jaén and Córdoba (Spain) 2008. Nutr Metab Cardiovasc Dis 20, 284294.
47Agudo, A, Slimani, N, Ocke, MC, et al. (2002) Consumption of vegetables, fruit and other plant foods in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohorts from 10 European countries. Public Health Nutr 5, 11791196.
48Vidavalur, R, Otani, H, Singal, PK, et al. (2006) Significance of wine and resveratrol in cardiovascular disease: French paradox revisited. Exp Clin Cardiol 11, 217225.
49Thorp, AA, Healy, GN, Owen, N, et al. (2010) Deleterious associations of sitting time and television viewing time with cardiometabolic risk biomarkers: Australian Diabetes, Obesity and Lifestyle (AusDiab) study 2004–2005. Diabetes Care 33, 327334.
50Jakes, RW, Day, NE, Khaw, KT, et al. (2003) Television viewing and low participation in vigorous recreation are independently associated with obesity and markers of cardiovascular disease risk: EPIC-Norfolk population-based study. Eur J Clin Nutr 57, 10891096.
51McFadden, E, Luben, R, Wareham, N, et al. (2008) Occupational social class, risk factors and cardiovascular disease incidence in men and women: a prospective study in the European Prospective Investigation of Cancer and Nutrition in Norfolk (EPIC-Norfolk) cohort. Eur J Epidemiol 23, 449458.
52Johannot, L & Somerset, SM (2006) Age-related variations in flavonoid intake and sources in the Australian population. Public Health Nutr 9, 10451054.
53Whichelow, MJ, Erzinclioglu, SW & Cox, BD (1991) A comparison of the diets of non-smokers and smokers. Br J Addict 86, 7181.
54Dauchet, L, Montaye, M, Ruidavets, JB, et al. (2010) Association between the frequency of fruit and vegetable consumption and cardiovascular disease in male smokers and non-smokers. Eur J Clin Nutr 64, 578586.
55Cui, Y, Morgenstern, H, Greenland, S, et al. (2008) Dietary flavonoid intake and lung cancer – a population-based case–control study. Cancer 112, 22412248.
56Bobe, G, Weinstein, SJ, Albanes, D, et al. (2008) Flavonoid intake and risk of pancreatic cancer in male smokers (Finland). Cancer Epidemiol Biomarkers Prev 17, 553562.
57Hughes, LA, Arts, IC, Ambergen, T, et al. (2008) Higher dietary flavone, flavonol, and catechin intakes are associated with less of an increase in BMI over time in women: a longitudinal analysis from the Netherlands Cohort Study. Am J Clin Nutr 88, 13411352.
58Hulshof, KF, Brussaard, JH, Kruizinga, AG, et al. (2003) Socio-economic status, dietary intake and 10 y trends: the Dutch National Food Consumption Survey. Eur J Clin Nutr 57, 128137.
59Williamson, G & Holst, B (2008) Dietary reference intake (DRI) value for dietary polyphenols: are we heading in the right direction? Br J Nutr 99, Suppl. 3, S55S58.
60Otaki, N, Kimira, M, Katsumata, S, et al. (2009) Distribution and major sources of flavonoid intakes in the middle-aged Japanese women. J Clin Biochem Nutr 44, 231238.
61Dilis, V & Trichopoulou, A (2010) Antioxidant intakes and food sources in Greek adults. J Nutr 140, 12741279.
62Beking, K & Vieira, A (2011) An assessment of dietary flavonoid intake in the UK and Ireland. Int J Food Sci Nutr 62, 1719.
63Arts, IC, Hollman, PC, Feskens, EJ, et al. (2001) Catechin intake might explain the inverse relation between tea consumption and ischemic heart disease: the Zutphen Elderly Study. Am J Clin Nutr 74, 227232.
64Kyle, JA, Sharp, L, Little, J, et al. (2010) Dietary flavonoid intake and colorectal cancer: a case–control study. Br J Nutr 103, 429436.
65Perez-Jimenez, J, Fezeu, L, Touvier, M, et al. (2011) Dietary intake of 337 polyphenols in French adults. Am J Clin Nutr 93, 12201228.
66Ovaskainen, ML, Torronen, R, Koponen, JM, et al. (2008) Dietary intake and major food sources of polyphenols in Finnish adults. J Nutr 138, 562566.
67Wang, Y, Chung, SJ, Song, WO, et al. (2011) Estimation of daily proanthocyanidin intake and major food sources in the U.S. diet. J Nutr 141, 447452.
68Skeie, G, Braaten, T, Hjartaker, A, et al. (2009) Use of dietary supplements in the European Prospective Investigation into Cancer and Nutrition calibration study. Eur J Clin Nutr 63, Suppl. 4, S226S238.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed