Skip to main content Accessibility help
×
×
Home

Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy

  • Matthew Harrison (a1) and Simon C. Langley-Evans (a1)

Abstract

Associations between birth weight and CVD in adult life are supported by experiments showing that undernutrition in fetal life programmes blood pressure. In rats, the feeding of a maternal low-protein (MLP) diet during gestation programmes hypertension. The present study aimed to assess the potential for a nutritional insult to impact across several generations. Pregnant female Wistar (F0) rats were fed a control (CON; n 10) or MLP (n 10) diet throughout gestation. At delivery all animals were fed a standard laboratory chow diet. At 10 weeks of age, F1 generation offspring were mated to produce a second generation (F2) without any further dietary change. The same procedure produced an F3 generation. Blood pressure in all generations was determined at 4, 6 and 8 weeks of age and nephron number was determined at 10 weeks of age. F1 generation MLP-exposed offspring exhibited raised (P < 0·001) systolic blood pressure (male 143 (sem 4) mmHg; female 141 (sem 4) mmHg) compared with CON animals (male 132 (sem 3) mmHg; female 134 (sem 4) mmHg). Raised blood pressure and reduced nephron number was also noted in the F2 generation (P < 0·001) and this intergenerational transmission occurred via both the maternal and paternal lines, as all three possible offspring crosses (MLP × CON, CON × MLP and MLP × MLP) were hypertensive (132 (sem 3) mmHg) compared with CON animals (CON × CON; 123 (sem 2) mmHg). No effect was noted in the F3 generation. It is concluded that fetal protein restriction may play a critical role in determining blood pressure and overall disease risk in a subsequent generation.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Intergenerational programming of impaired nephrogenesis and hypertension in rats following maternal protein restriction during pregnancy
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Simon Langley-Evans, fax +44 115 9516122, email Simon.Langley-Evans@Nottingham.ac.uk

References

Hide All
1Gluckman, PD & Hanson, MA (2004) Living with the past: evolution, development, and patterns of disease. Sci Tech Froid 305, 17331736.
2Barker, DJ, Winter, PD, Osmond, C, Margetts, B & Simmonds, SJ (1989) Weight in infancy and death from ischaemic heart disease. Lancet ii, 577580.
3Eriksson, J, Forsen, T, Tuomilehto, J, Osmond, C & Barker, DJ (2001) Size at birth, childhood growth and obesity in adult life. Int J Obes 25, 735740.
4Barker, DJ, Gluckman, PD, Godfrey, KM, Harding, JE, Owens, JA & Robinson, JS (1993) Fetal nutrition and cardiovascular disease in adult life. Lancet 341, 938941.
5Langley-Evans, SC (2006) Developmental programming of health and disease. Proc Nutr Soc 65, 97105.
6Barker, DJ, Eriksson, JG, Forsen, T & Osmond, C (2002) Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 31, 12351239.
7Langley-Evans, SC, Gardner, DS & Jackson, AA (1996) Association of disproportionate growth of fetal rats in late gestation with raised systolic blood pressure in later life. J Reprod Fertil 106, 307312.
8Bergel, E & Belizan, JM (2002) A deficient maternal calcium intake during pregnancy increases blood pressure of the offspring in adult rats. BJOG 109, 540545.
9Crowe, C, Dandekar, P, Fox, M, Dhingra, K, Bennet, L & Hanson, MA (1995) The effects of anaemia on heart, placenta and body weight, and blood pressure in fetal and neonatal rats. J Physiol 488, 515519.
10Gambling, L, Dunford, S, Wallace, DI, Zurr, G, Solanky, N, Srai, SK & McArdle, H (2003) Iron deficiency during pregnancy affects postnatal blood pressure in the rat. J Physiol 552, 603610.
11Langley, SC & Jackson, AA (1994) Increased systolic blood pressure in adult rats induced by fetal exposure to maternal low protein diets. Clin Sci (Lond) 86, 217222.
12Langley-Evans, SC, Phillips, GJ & Jackson, AA (1994) In utero exposure to maternal low protein diets induces hypertension in weanling rats, independently of maternal blood pressure changes. Clin Nutr 13, 319324.
13Langley-Evans, SC, Phillips, GJ, Benediktsson, R, Gardner, DS, Edwards, CR, Jackson, AA & Seckl, JR (1996) Protein intake in pregnancy, placental glucocorticoid metabolism and the programming of hypertension in the rat. Placenta 17, 169172.
14Langley-Evans, SC, Welham, SJ, Sherman, RC & Jackson, AA (1996) Weanling rats exposed to maternal low-protein diets during discrete periods of gestation exhibit differing severity of hypertension. Clin Sci (Lond) 91, 607615.
15Mackenzie, HS & Brenner, BM (1995) Fewer nephrons at birth: a missing link in the etiology of essential hypertension? Am J Kidney Dis 26, 9198.
16Langley-Evans, SC, Welham, SJ & Jackson, AA (1999) Fetal exposure to a maternal low protein diet impairs nephrogenesis and promotes hypertension in the rat. Life Sci 64, 965974.
17Jaenisch, R & Bird, A (2003) Epigenetic regulation of gene expression: how the genome integrates intrinsic and environmental signals. Nat Genet 33, 245354.
18Waterland, RA & Jirtle, RL (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23, 52935300.
19Burdge, GC, Hanson, MA, Slater-Jefferies, JL & Lillycrop, KA (2007) Dietary protein restriction of pregnant rats in the F0 generation induces altered methylation of hepatic gene promoters in the adult male offspring in the F1 and F2 generations. Br J Nutr 97, 435439.
20Beach, RS, Gershwin, ME & Hurley, LS (1982) Gestational zinc deprivation in mice: persistence of immunodeficiency for three generations. Science 218, 469471.
21James, WPT (2002) Will feeding mothers prevent the Asian metabolic syndrome epidemic? Asia Pac J Clin Nutr 11, S516S523.
22Pembrey, M (1996) Imprinting and transgenerational modulation of gene expression: human growth as a model. Acta Genet Med Gemellol (Roma) 45, 111125.
23Erhuma, A, Bellinger, L, Langley-Evans, SC & Bennett, AJ (2007) Prenatal exposure to undernutrition and programming of responses to high-fat feeding in the rat. Br J Nutr 98, 517524.
24Bellinger, L, Lilley, C & Langley-Evans, SC (2004) Prenatal exposure to a maternal low-protein diet programmes a preference for high-fat foods in the young adult rat. Br J Nutr 92, 513520.
25Sherman, RC & Langley-Evans, SC (1998) Early administration of angiotensin-converting enzyme inhibitor captopril, prevents the development of hypertension programmed by intrauterine exposure to a maternal low-protein diet in the rat. Clin Sci (Lond) 94, 373381.
26Welham, SJ, Wade, A & Woolf, AS (2002) Protein restriction in pregnancy is associated with increased apoptosis of mesenchymal cells at the start of rat metanephrogenesis. Kidney Int 61, 12311242.
27Bertram, JF (2001) Counting in the kidney. Kidney Int 59, 792796.
28Zimanyi, MA, Bertram, JF & Black, JM (2000) Nephron number in the offspring of rats fed a low protein diet during pregnancy. Image Anal Stereol 19, 219222.
29Trinder, P (1969) Determination of blood glucose using a oxidase-peroxidase system with a non-carcinogenic chromogen. J Clin Pathol 22, 158161.
30Festing, MF (2006) Design and statistical methods in studies using animal models of development. ILAR J 47, 514.
31Nwagwu, MO, Cook, A & Langley-Evans, SC (2000) Evidence of progressive deterioration of renal function in rats exposed to a maternal low-protein diet in utero. Br J Nutr 83, 7985.
32Bellinger, L, Sculley, DV & Langley-Evans, SC (2006) Exposure to undernutrition in fetal life determines fat distribution, locomotor activity and food intake in ageing rats. Int J Obes (Lond) 30, 729738.
33Erhuma, A, Salter, AM, Sculley, DV, Langley-Evans, SC & Bennett, AJ (2007) Prenatal exposure to a low-protein diet programs disordered regulation of lipid metabolism in the aging rat. Am J Physiol Endocrinol Metab 292, E1702E1714.
34Anway, MD, Rekow, SS & Skinner, MK (2008) Transgenerational epigenetic programming of the embryonic testis transcriptome. Genomics 91, 3040.
35Zambrano, E, Martinez-Samayoa, PM, Bautista, CJ, Deas, M, Guillen, L, Rodriguez-Gonzalez, GL, Guzman, C, Larrea, F & Nathanielsz, PW (2005) Sex differences in transgenerational alterations of growth and metabolism in progeny (F2) of female offspring (F1) of rats fed a low protein diet during pregnancy and lactation. J Physiol 566, 225236.
36Waterland, RA, Travisano, M & Tahiliani, KG (2007) Diet-induced hypermethylation at agouti viable yellow is not inherited transgenerationally through the female. FASEB J 21, 33803385.
37Reusens, B & Remacle, C (2001) Intergenerational effect of an adverse intrauterine environment on perturbation of glucose metabolism. Twin Res 4, 406411.
38Langley-Evans, SC & Jackson, AA (1995) Captopril normalises systolic blood pressure in rats with hypertension induced by fetal exposure to maternal low protein diets. Comp Biochem Physiol A Physiol 110, 223228.
39Bird, A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 1, 621.
40Van den Veyver, IB (2002) Genetic effects of methylation diets. Annu Rev Nutr 22, 255282.
41Burdge, GC, Hanson, MA, Slater-Jefferies, JL & Lillycrop, KA (2007) Epigenetic regulation of transcription: a mechanism for inducing variations in phenotype (fetal programming) by differences in nutrition during early life? Br J Nutr 97, 10361046.
42Lillycrop, KA, Slater-Jefferies, JL, Hanson, MA, Godfrey, KM, Jackson, AA & Burdge, GC (2007) Induction of altered epigenetic regulation of the hepatic glucocorticoid receptor in the offspring of rats fed a protein-restricted diet during pregnancy suggests that reduced DNA methyltransferase-1 expression is involved in impaired DNA methylation and changes in histone modifications. Br J Nutr 97, 10641073.
43Kaati, G, Bygren, LO & Edvinsson, S (2002) Cardiovascular and diabetes mortality determined by nutrition during parents' and grandparents' slow growth period. Eur J Hum Genet 10, 682688.
44McMullen, S & Langley-Evans, SC (2005) Maternal low-protein diet in rat pregnancy programs blood pressure through sex-specific mechanisms. Am J Physiol Regul Integr Comp Physiol 288, R85R90.
45Torrens, C, Poston, L & Hanson, MA (2008) Transmission of raised blood pressure and endothelial dysfunction to the F2 generation induced by maternal protein restriction in the F0, in the absence of dietary challenge in the F1 generation. Br J Nutr (epublication ahead of print version 28 February 2008).
46Kris-Etherton, P, Eckel, RH, Howard, BV, St Jeor, S & Bazzarre, TL (2001) AHA Science Advisory: Lyon Diet Heart Study. Benefits of a Mediterranean-style, National Cholesterol Education Program/American Heart Association Step I Dietary Pattern on cardiovascular disease. Circulation 103, 18231825.
47Adlercreutz, H (1990) Western diet and Western diseases: some hormonal and biochemical mechanisms and associations. Scand J Clin Lab Invest Suppl 201, 323.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed