Skip to main content Accessibility help
×
×
Home

Iron deficiency without anaemia is a potential cause of fatigue: meta-analyses of randomised controlled trials and cross-sectional studies

  • Katsuhiko Yokoi (a1) and Aki Konomi (a2)
Abstract

Fe deficiency is a prevalent nutritional disease, and fatigue is a common complaint in the general and patient population. The association between Fe deficiency without anaemia (IDNA) and fatigue is unclear. Here, we performed a meta-analysis to evaluate the therapeutic effect of Fe on fatigue in patients with IDNA and the association between IDNA and fatigue in the population. Articles from the PubMed database up to 19 January 2016 were systematically searched. A total of six relevant randomised controlled trials (RCT) and six relevant cross-sectional studies were identified. All outcomes were converted into effect sizes. In the meta-analysis of the six RCT, we identified a significant therapeutic effect of Fe in fatigue patients with IDNA (pooled effect size 0·33; 95 % CI 0·17, 0·48; I 2=0·0 %; P<0·0001). A sensitivity analysis found that the overall results (i.e. significant association) were robust. In the meta-analysis of the six cross-sectional studies, the association between IDNA and fatigue was not significant (pooled effect size 0·10; 95 % CI −0·11, 0·31; I 2=57·4 %; P=0·362). A sensitivity analysis found that the overall results (i.e. no significant association) were not robust; removal of one study made the outcomes significant. These meta-analyses suggest that improving Fe status may decrease fatigue. Further research is necessary to identify diagnostic criteria for selecting fatigue patients who might benefit from Fe therapy and to assess the prevalence of IDNA with fatigue in the general population.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Iron deficiency without anaemia is a potential cause of fatigue: meta-analyses of randomised controlled trials and cross-sectional studies
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Iron deficiency without anaemia is a potential cause of fatigue: meta-analyses of randomised controlled trials and cross-sectional studies
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Iron deficiency without anaemia is a potential cause of fatigue: meta-analyses of randomised controlled trials and cross-sectional studies
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: K. Yokoi, fax +81 47 363 1401, email yokoi@seitoku.ac.jp
References
Hide All
1. Public Health England and the Food Standards Agency (2014) National Diet and Nutrition Survey. Results from Years 1–4 (Combined) of the Rolling Programme (2008/2009–2011/12). London: Public Health England and the Food Standards Agency.
2. Miller, EM (2014) Iron status and reproduction in US women: National Health and Nutrition Examination Survey, 1999–2006. PLOS ONE 9, e112216.
3. Yokoi, K (2014) Estimation of iron requirements for women by numerical analysis of population-based data from the National Health and Nutrition Surveys of Japan 2003–2007. J Trace Elem Med Biol 28, 453458.
4. Lopez, A, Cacoub, P, Macdougall, IC, et al. (2015) Iron deficiency anaemia. Lancet 387, 907916.
5. Sydenham, T (1769) The Entire Works of Dr. Thomas Sydenham, 5th ed. (J Swan, editor, English translation from Latin). London: F. Newbery.
6. Sharpe, M (2006) The symptom of generalised fatigue. Pract Neurol 6, 7277.
7. Becquerel, A & Rodier, A (1844) Recherches sur la composition du sang dans l’etat de sante et dans l’etat de maladie (Research on blood in the state of health and the state of illness). Gazette Medicale de Paris 12, 751757, 765–772, 781–802, 813–820 (in French).
8. Laache, S (1883) Die Anämie. Christiania: Die Mallingsche Buchdruckerei (in German).
9. Skapinakis, P, Lewis, G & Meltzer, H (2000) Clarifying the relationship between unexplained chronic fatigue and psychiatric morbidity: results from a community survey in Great Britain. Am J Psychiatry 157, 14921498.
10. Wessely, S, Chalder, T, Hirsch, S, et al. (1997) The prevalence and morbidity of chronic fatigue and chronic fatigue syndrome: a prospective primary care study. Am J Pubic Health 87, 14491455.
11. Murtagh, JE (1996) Making fatigue less tiresome. Med J Aust 164, 580581.
12. Pawlikowska, T, Chalder, T, Hirsch, SR, et al. (1994) Population based study of fatigue and psychological distress. BMJ 308, 763766.
13. Beutler, E, Larsh, SE & Gurney, CW (1960) Iron therapy in chronically fatigued, nonanemic women: a double-blind study. Ann Int Med 52, 378394.
14. Verdon, F, Burnand, B, Stubi, C-LF, et al. (2003) Iron supplementation for unexplained fatigue in non-anaemic women: double blind randomised placebo controlled trial. BMJ 326, 1124.
15. Krayenbuehl, P-A, Battegay, E, Breymann, C, et al. (2011) Intravenous iron for the treatment of fatigue in nonanemic, premenopausal women with low serum ferritin concentration. Blood 118, 32223227.
16. Vaucher, P, Druais, PL, Waldvogel, S, et al. (2012) Effect of iron supplementation on fatigue in nonanemic menstruating women with low ferritin: a randomized controlled trial. CMAJ 184, 12471254.
17. Morrow, JJ, Dagg, JH & Goldberg, A (1968) A controlled trial of iron therapy in sideropenia. Scott Med J 13, 7983.
18. Waldvogel, S, Pedrazzini, B, Vaucher, P, et al. (2012) Clinical evaluation of iron treatment efficiency among non-anemic but iron-deficient female blood donors: a randomized controlled trial. BMC Med 10, 8.
19. Piednoir, P, Allou, N, Driss, F, et al. (2011) Preoperative iron deficiency increases transfusion requirements and fatigue in cardiac surgery patients: a prospective observational study. Eur J Anaesthesiol 28, 796801.
20. Comin-Colet, J, Enjuanes, C, Gonzalez, G, et al. (2013) Iron deficiency is a key determinant of health-related quality of life in patients with chronic heart failure regardless of anaemia status. Eur J Heart Fail 15, 11641172.
21. Sawada, T, Konomi, A & Yokoi, K (2014) Iron deficiency without anemia is associated with anger and fatigue in young Japanese women. Biol Trace Elem Res 159, 2231.
22. Lasocki, S, Chudeau, N, Papet, T, et al. (2014) Prevalence of iron deficiency on ICU discharge and its relation with fatigue: a multicenter prospective study. Crit Care 18, 542.
23. Goldenberg, BA, Graff, LA, Clara, I, et al. (2013) Is iron deficiency in the absence of anemia associated with fatigue in inflammatory bowel disease? Am J Gastroenterol 108, 13921397.
24. Beck, KL, Conlon, CA, Kruger, R, et al. (2012) Iron status and self-perceived health, well-being, and fatigue in female university students living in New Zealand. J Am Coll Nutr 31, 4553.
25. Cooper, H, Hedges, LV & Valentine, JC (editors) (2009) The Handbook of Research Synthesis and Meta-Analysis, 2nd ed. New York, NY: Russell Sage Foundation.
26. Mullen, B (1989) Advanced Basic Meta-Analysis. Hillsdale, NJ: Lawrence Erlbaum Associates, Inc.
27. Hedges, LV (1981) Distribution theory for Glass’s estimator of effect size and related estimators. J Edu Stat 6, 107128.
28. Cox, DR (1970) Analysis of Binary Data. New York, NY: Chapman & Hall.
29. Sanchez-Meca, J, Marin-Martinez, F & Chacon-Moscoso, S (2003) Effect-size indices for dichotomized outcomes in meta-analysis. Psychol Methods 8, 448467.
30. Haldane, JBS (1956) The estimation and significance of the logarithm of a ratio of frequencies. Ann Hum Genet 20, 309311.
31. Gart, JJ & Zweifel, JR (1967) On the bias of various estimators of the logit and its variance with application to quantal bioassay. Biometrika 54, 181187.
32. Borenstein, M (2009) Effect sizes for continuous data. In The Handbook of Research Synthesis and Meta-Analysis , 2nd ed. pp. 221235 [H Cooper, LV Hedges and JC Valentine, editors]. New York, NY: Russell Sage Foundation.
33. Weisberg, S (2005) Applied Linear Regression, 3rd ed. Hoboken, NJ: John Wiley & Sons, Inc.
34. Ferguson, BJ, Skikne, BS, Simpson, KM, et al. (1992) Serum transferrin receptor distinguishes the anemia of chronic disease from iron deficiency anemia. J Lab Clin Med 119, 385390.
35. Karshikoff, B, Sundelin, T & Lasselin, J (2017) Role of inflammation in human fatigue: relevance of multidimensional assessments and potential neuronal mechanisms. Front Immunol 8, 21.
36. Agarwal, R (2007) Nonhematological benefits of iron. Am J Nephrol 27, 565571.
37. Pratt, JJ & Khan, KS (2016) Non-anaemic iron deficiency –a disease looking for recognition of diagnosis: a systematic review. Eur J Haematol 96, 618628.
38. Peyrin-Biroulet, L, Williet, N & Cacoub, P (2015) Guidelines on the diagnosis and treatment of iron deficiency across indications: a systematic review. Am J Clin Nutr 102, 15851594.
39. Mast, AE, Blinder, MA, Gronowski, AM, et al. (1998) Clinical utility of the soluble transferrin receptor and comparison with serum ferritin in several populations. Clin Chem 44, 4551.
40. World Health Organization (2011) Serum Ferritin Concentrations for the Assessment of Iron Status and Iron Deficiency in Populations , WHO/nmh/nhd/mnm/11.2. Geneva: WHO.
41. da Costa, BR, Rutjes, AW, Johnston, BC, et al. (2012) Methods to convert continuous outcomes into odds ratios of treatment response and numbers needed to treat: meta-epidemiological study. Int J Epidemiol 41, 14451459.
42. Hasselblad, V & Hedges, LV (1995) Meta-analysis of screening and diagnostic tests. Psychol Bull 117, 167178.
43. Cruciani, RA, Zhang, JJ, Manola, J, et al. (2012) L-carnitine supplementation for the management of fatigue in patients with cancer: an Eastern Cooperative Oncology Group phase III, randomized, double-blind, placebo-controlled trial. J Clin Oncol 30, 38643869.
44. Spathis, A, Fife, K, Blackhall, F, et al. (2014) Modafinil for the treatment of fatigue in lung cancer: results of a placebo-controlled, double-blind, randomized trial. J Clin Oncol 32, 18821888.
45. Brownlie, T, Utermohlen, V, Hinton, PS, et al. (2002) Marginal iron deficiency without anemia impairs aerobic adaptation among previously untrained women. Am J Clin Nutr 75, 734742.
46. Brutsaert, TD, Hernandez-Cordero, S, Rivera, J, et al. (2003) Iron supplementation improves progressive fatigue resistance during dynamic knee extensor exercise in iron-depleted, nonanemic women. Am J Clin Nutr 77, 441448.
47. Greminger, AR & Mayer-Pröschel, M (2015) Identifying the threshold of iron deficiency in the central nervous system of the rat by the auditory brainstem response. ASN Neuro 7, 1759091415569911.
48. Hunt, JR, Zito, CA, Erjavec, J, et al. (1994) Severe or marginal iron deficiency affects spontaneous physical activity in rats. Am J Clin Nutr 59, 413418.
49. Lozoff, B, Clark, KM, Jing, Y, et al. (2008) Dose-response relationships between iron deficiency with or without anemia and infant social-emotional behavior. J Pediatr 152, 696702, 702 e691-693.
50. Bruner, AB, Joffe, A, Duggan, AK, et al. (1996) Randomised study of cognitive effects of iron supplementation in non-anaemic iron-deficient adolescent girls. Lancet 348, 992996.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
PDF
Supplementary materials

Yokoi and Konomi supplementary material
Appendices

 PDF (300 KB)
300 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed