Skip to main content
×
×
Home

Is dietary macronutrient composition during pregnancy associated with offspring birth weight? An observational study

  • Sukshma S. Sharma (a1), Darren C. Greenwood (a2), Nigel A. B. Simpson (a3) and Janet E. Cade (a1)
Abstract

There is lack of evidence on the differential impact of maternal macronutrient consumption: carbohydrates (CHO), fats and protein on birth weight. We investigated the association between maternal dietary macronutrient intakes and their sub-components such as saccharides and fatty acids and birth weight. This analyses included 1,196 women with singleton pregnancies who were part of the CAffeine and REproductive health study in Leeds, UK between 2003 and 2006. Women were interviewed in each trimester. Dietary information was collected twice using a 24-h dietary recall about 8–12 weeks and 13–27 weeks of gestation. Multiple linear regression models adjusted for alcohol and smoking in trimester 1, showed that each additional 10 g/d CHO consumption was associated with an increase of 4 g (95 % CI 1, 7; P=0·003) in birth weight. Conversely, an additional 10 g/d fat intake was associated with a lower birth weight of 8 g (95 % CI 0, 16; P=0·04) when we accounted for energy contributing macronutrients in each model, and maternal height, weight, parity, ethnicity, gestational age at delivery and sex of the baby. There was no evidence of an association between protein intake and birth weight. Maternal diet in trimester 2 suggested that higher intakes of glucose (10 g/d) and lactose (1 g/d) were both associated with higher birth weight of 52 g (95 % CI 4, 100; P=0·03) and 5 g (95 % CI 2, 7; P<0·001) respectively. These results show that dietary macronutrient composition during pregnancy is associated with birth weight outcomes. An appropriately balanced intake of dietary CHO and fat during pregnancy could support optimum birth weight.

Copyright
Corresponding author
* Corresponding author: S. S. Sharma, email fsss@leeds.ac.uk
References
Hide All
1. Blumfield, ML, Hure, AJ, MacDonald-Wicks, LK, et al. (2012) Dietary balance during pregnancy is associated with fetal adiposity and fat distribution. Am J Clin Nutr 96, 10321041.
2. Moore, VM & Davies, MJ (2005) Diet during pregnancy, neonatal outcomes and later health. Reprod Fertil Dev 17, 341348.
3. Maslova, E, Rytter, D, Bech, BH, et al. (2016) Maternal intake of fat in pregnancy and offspring metabolic health – a prospective study with 20 years of follow-up. Clin Nutr 35, 475483.
4. Kjøllesdal, MKR & Holmboe-Ottesen, G (2014) Dietary patterns and birth weight – a review. AIMS Public Health 1, 211225.
5. Brantsæter, AL, Haugen, M, Myhre, R, et al. (2014) Diet matters, particularly in pregnancy – Results from MoBa studies of maternal diet and pregnancy outcomes. Norsk Epidemiologi 24, 6377.
6. Englund-Ögge, L, Brantsæter, AL, Sengpiel, V, et al. (2014) Maternal dietary patterns and preterm delivery: results from large prospective cohort study. BMJ 348, g1446.
7. Chen, L-W, Wu, Y, Neelakantan, N, et al. (2014) Maternal caffeine intake during pregnancy is associated with risk of low birth weight: a systematic review and dose–response meta-analysis. BMC Med. 12, 174.
8. Thompson, JMD, Wall, C, Becroft, DMO, et al. (2010) Maternal dietary patterns in pregnancy and the association with small-for-gestational-age infants. Br J Nutr 103, 16651673.
9. Klemmensen, Å, Tabor, A, Østerdal, ML, et al. (2009) Intake of vitamin C and E in pregnancy and risk of pre-eclampsia: prospective study among 57 346 women. BJOG 116, 964974.
10. Haider, B, Yakoob, M & Bhutta, ZA (2011) Effect of multiple micronutrient supplementation during pregnancy on maternal and birth outcomes. BMC Public Health 11, Suppl. 3, S19.
11. Lu, W-P, Lu, M-S, Li, Z-H, et al. (2014) Effects of multimicronutrient supplementation during pregnancy on postnatal growth of children under 5 years of age: a meta-analysis of randomized controlled trials. PLOS ONE 9, e88496.
12. Alwan, NA, Greenwood, DC, Simpson, NAB, et al. (2011) Dietary iron intake during early pregnancy and birth outcomes in a cohort of British women. Hum Reprod 26, 911919.
13. Kawai, K, Spiegelman, D, Shankar, AH, et al. (2011) Maternal multiple micronutrient supplementation and pregnancy outcomes in developing countries: meta-analysis and meta-regression. Bull World Health Organ 89, 402411B.
14. Fekete, K, Berti, C, Trovato, M, et al. (2012) Effect of folate intake on health outcomes in pregnancy: a systematic review and meta-analysis on birth weight, placental weight and length of gestation. J Nutr 11, 75.
15. Imdad, A & Bhutta, ZA (2012) Maternal nutrition and birth outcomes: effect of balanced protein-energy supplementation. Paediatr Perinat Epidemiol 26, Suppl. 1, 178190.
16. Stevens, B, Buettner, P, Watt, K, et al. (2015) The effect of balanced protein energy supplementation in undernourished pregnant women and child physical growth in low- and middle-income countries: a systematic review and meta-analysis. Matern Child Nutr 11, 415432.
17. Liberato, SC, Singh, G & Mulholland, K (2013) Effects of protein energy supplementation during pregnancy on fetal growth: a review of the literature focusing on contextual factors. Food Nutr Res 57, 20499.
18. Blumfield, ML, Hure, AJ, Macdonald-Wicks, L, et al. (2012) Systematic review and meta-analysis of energy and macronutrient intakes during pregnancy in developed countries. Nutr Rev 70, 322336.
19. von Ruesten, A, Brantsæter, AL, Haugen, M, et al. (2014) Adherence of pregnant women to Nordic dietary guidelines in relation to postpartum weight retention: results from the Norwegian Mother and Child Cohort Study. BMC Public Health 14, 75.
20. Moore, VM, Davies, MJ, Willson, KJ, et al. (2004) Dietary composition of pregnant women is related to size of the baby at birth. J Nutr 134, 18201826.
21. Chong, MF-F, Chia, A-R, Colega, M, et al. (2015) Maternal protein intake during pregnancy is not associated with offspring birth weight in a multiethnic Asian population. J Nutr 145, 13031310.
22. CucÓ, G, Arija, V, Iranzo, R, et al. (2006) Association of maternal protein intake before conception and throughout pregnancy with birth weight. Acta Obstet Gynecol Scand 85, 413421.
23. Lagiou, P, Tamimi, RM, Mucci, LA, et al. (2004) Diet during pregnancy in relation to maternal weight gain and birth size. Eur J Clin Nutr 58, 231237.
24. Knudsen, VK, Orozova-Bekkevold, IM, Mikkelsen, TB, et al. (2007) Major dietary patterns in pregnancy and fetal growth. Eur J Clin Nutr 62, 463470.
25. De Giuseppe, R, Roggi, C & Cena, H (2014) n-3 LC-PUFA supplementation: effects on infant and maternal outcomes. Eur J Nutr 53, 11471154.
26. Imhoff-Kunsch, B, Briggs, V, Goldenberg, T, et al. (2012) Effect of n-3 long-chain polyunsaturated fatty acid intake during pregnancy on maternal, infant, and child health outcomes: a systematic review. Paediatr Perinat Epidemiol 26, Suppl. 1, 91107.
27. Oken, E, Kleinman, KP, Olsen, SF, et al. (2004) Associations of seafood and elongated n-3 fatty acid intake with fetal growth and length of gestation: results from a US pregnancy cohort. Am J Epidemiol 160, 774783.
28. Szajewska, H, Horvath, A & Koletzko, B (2006) Effect of n–3 long-chain polyunsaturated fatty acid supplementation of women with low-risk pregnancies on pregnancy outcomes and growth measures at birth: a meta-analysis of randomized controlled trials. Am J Clin Nutr 83, 13371344.
29. Mani, I, Dwarkanath, P, Thomas, T, et al. (2016) Maternal fat and fatty acid intake and birth outcomes in a South Indian population. Int J Epidemiol 45, 523531.
30. Gardosi, J, Chang, A, Kalyan, B, et al. (1992) Customised antenatal growth charts. Lancet 339, 283287.
31. Gardosi, J (2004) Customized fetal growth standards: rationale and clinical application. Semin Perinatol 28, 3340.
32. Boylan, SCJ, Dolby, VA, Greenwood, DC, et al. (2010) Maternal caffeine intake during pregnancy and risk of fetal growth restriction: a large prospective observational study. BMJ 340, c2331.
33. Greenwood, DC, Alwan, N, Boylan, S, et al. (2010) Caffeine intake during pregnancy, late miscarriage and stillbirth. Eur J Epidemiol 25, 275280.
34. Alwan, NA, Greenwood, DC, Simpson, NA, et al. (2010) The relationship between dietary supplement use in late pregnancy and birth outcomes: a cohort study in British women. BJOG 117, 821829.
35. Boylan, SM, Cade, JE, Kirk, SFL, et al. (2008) Assessing caffeine exposure in pregnant women. Br J Nutr 100, 875882.
36. Holland, BWA, Unwin, ID, Buss, DH, et al. (1992) McCance and Widdowson’s The Composition of Foods, 5th ed. Cambridge: Royal Society of Chemistry.
37. Cogswell, ME, Weisberg, P & Spong, C (2003) Cigarette smoking, alcohol use and adverse pregnancy outcomes: implications for micronutrient supplementation. J Nutr 133, 1722S1731S.
38. Nykjaer, C, Alwan, NA, Greenwood, DC, et al. (2014) Maternal alcohol intake prior to and during pregnancy and risk of adverse birth outcomes: evidence from a British cohort. J Epidemiol Community Health 68, 542549.
39. Gestation Network (2017) Gestation network-customised growth charts. http://www.gestation.net/ (accessed March 2016).
40. Clausson, B, Gardosi, J, Francis, A, et al. (2001) Perinatal outcome in SGA births defined by customised versus population-based birthweight standards. Br J Obstet Gynaecol 108, 830834.
41. Pasupathy, D, McCowan, L, Poston, L, et al. (2011) Perinatal outcomes in large for gestational age infants; the use of absolute birth weight or customised birth weight centiles? Am J Obstet Gynecol 204, S222.
42. Kroener, L, Wang, ET & Pisarska, MD (2016) Predisposing factors to abnormal first trimester placentation and the impact on fetal outcomes. Semin Reprod Med 34, 2735.
43. Roberts, CT (2010) IFPA Award in Placentology Lecture: complicated interactions between genes and the environment in placentation, pregnancy outcome and long term health. Placenta 31, Suppl., S47S53.
44. Smith, GCS (2004) First trimester origins of fetal growth impairment. Semin Perinatol 28, 4150.
45. Brantsæter, AL, Olafsdottir, AS, Forsum, E, et al. (2012) Does milk and dairy consumption during pregnancy influence fetal growth and infant birthweight? A systematic literature review. Food Nutr Res 56, 20050.
46. Walsh, J, Mahony, R, Byrne, J, et al. (2011) The association of maternal and fetal glucose homeostasis with fetal adiposity and birthweight. 159, 338341.
47. Gabbe, SG & Quilligan, EJ (1977) Fetal carbohydrate metabolism: its clinical importance. Am J Obstet Gynecol 127, 92103.
48. Hay, WW Jr. & Sparks, JW (1985) Placental, fetal, and neonatal carbohydrate metabolism. Clin Obstet Gynecol 28, 473485.
49. Hay, WW (2006) Recent observations on the regulation of fetal metabolism by glucose. J Physiol 572, 1724.
50. Langley-Evans, AJ & Langley-Evans, SC (2003) Relationship between maternal nutrient intakes in early and late pregnancy and infants weight and proportions at birth: prospective cohort study. J R Soc Promot Health 123, 210216.
51. Kerssen, A, de Valk, HW & Visser, GHA (2007) Increased second trimester maternal glucose levels are related to extremely large-for-gestational-age infants in women with type 1 diabetes. Diabetes Care 30, 10691074.
52. Butte, NF (2000) Carbohydrate and lipid metabolism in pregnancy: normal compared with gestational diabetes mellitus. Am J Clin Nutr 71, 1256s1261s.
53. Combs, CA, Gunderson, E, Kitzmiller, JL, et al. (1992) Relationship of fetal macrosomia to maternal postprandial glucose control during pregnancy. Diabetes Care 15, 12511257.
54. Walsh, JM, McGowan, CA, Mahony, R, et al. (2012) Low glycaemic index diet in pregnancy to prevent macrosomia (ROLO study): randomised control trial. BMJ 345, e5605.
55. Clapp, JF 3rd (2002) Maternal carbohydrate intake and pregnancy outcome. Proc Nutr Soc 61, 4550.
56. Pedersen, J (1961) Pathogenesis of the characteristic features of newborn infants of diabetic women. In The Pregnant Diabetic and Her Newborn, pp. 128137. Baltimore, MD: Williams and Wilkins.
57. Olsen, SF, Halldorsson, TI, Willett, WC, et al. (2007) Milk consumption during pregnancy is associated with increased infant size at birth: prospective cohort study. Am J Clin Nutr 86, 11041110.
58. Olmedo-Requena, R, Amezcua-Prieto, C, Luna-Del-Castillo, dJD, et al. (2016) Association between low dairy intake during pregnancy and risk of small-for-gestational-age infants. Matern Child Health 20, 12961304.
59. Bath, SC, Hill, S, Goenaga Infante, H, et al. (2017) Iodine concentration of milk-alternative drinks available in the UK in comparison with cows’ milk. Br J Nutr 118, 525532.
60. Yang, Z & Huffman, SL (2011) Review of fortified food and beverage products for pregnant and lactating women and their impact on nutritional status. Matern Child Nutr 7, 1943.
61. Rydbeck, F, Rahman, A, Grandér, M, et al. (2014) Maternal urinary iodine concentration up to 1.0 mg/L is positively associated with birth weight, length, and head circumference of male offspring. J Nutr 144, 14381444.
62. Andersen, SL, Olsen, J, Wu, CS, et al. (2013) Low birth weight in children born to mothers with hyperthyroidism and high birth weight in hypothyroidism, whereas preterm birth is common in both conditions: a Danish National Hospital Register Study. Eur Thyroid J 2, 135144.
63. Xiao, Y, Sun, H, Li, C, et al. (2017) Effect of iodine nutrition on pregnancy outcomes in an iodine-sufficient area in China. Biol Trace Elem Res (epublication ahead of print version 2 August 2017).
64. Kovacs, CS (2014) Bone metabolism in the fetus and neonate. Pediatr Nephrol 29, 793803.
65. Sabour, H, Hossein-Nezhad, A, Maghbooli, Z, et al. (2006) Relationship between pregnancy outcomes and maternal vitamin D and calcium intake: a cross-sectional study. Gynecol Endocrinol 22, 585589.
66. Chiaffarino, F, Parazzini, F, Chatenoud, L, et al. (2006) Alcohol drinking and risk of small for gestational age birth. Eur J Clin Nutr 60, 10621066.
67. Windham, GC, Fenster, L, Hopkins, B, et al. (1995) The association of moderate maternal and paternal alcohol consumption with birthweight and gestational age. J Epidemiol 6, 591597.
68. Nykjaer, C, Alwan, NA, Greenwood, DC, et al. (2013) Maternal alcohol intake up to and during pregnancy and risk of adverse birth outcomes: evidence from a British cohort. Lancet 382, S79.
69. Khan, IY, Dekou, V, Douglas, G, et al. (2005) A high-fat diet during rat pregnancy or suckling induces cardiovascular dysfunction in adult offspring. Am J Physiol 288, R127R133.
70. White, CL, Purpera, MN & Morrison, CD (2009) Maternal obesity is necessary for programming effect of high-fat diet on offspring. Am J Physiol 296, R1464R1472.
71. Newman, RE, Bryden, WL, Fleck, E, et al. (2002) Dietary n-3 and n-6 fatty acids alter avian metabolism: metabolism and abdominal fat deposition. Br J Nutr 88, 1118.
72. Nuernberg, K, Breier, BH, Jayasinghe, SN, et al. (2011) Metabolic responses to high-fat diets rich in n-3 or n-6 long-chain polyunsaturated fatty acids in mice selected for either high body weight or leanness explain different health outcomes. Nutr Metab 8, 56.
73. Department of Health (1991) Dietary Reference Values. A Guide. London: HMSO.
74. Chen, L-W, Tint, M-T, Fortier, MV, et al. (2016) Maternal macronutrient intake during pregnancy is associated with neonatal abdominal adiposity: the Growing Up in Singapore Towards healthy Outcomes (GUSTO) Study. J Nutr 146, 15711579.
75. Hartman, AM, Brown, CC, Palmgren, J, et al. (1990) Variability in nutrient and food intakes among older middle-aged men. Implications for design of epidemiologic and validation studies using food recording. Am J Epidemiol 132, 9991012.
76. Beer-Borst, S & Amadò, R (1995) Validation of a self-administered 24-hour recall questionnaire used in a large-scale dietary survey. Z Ernahrungswiss 34, 183189.
77. Sharma, M, Rao, M, Jacob, S, et al. (1998) Validation of 24-hour dietary recall: a study in hemodialysis patients. J Ren Nutr 8, 199202.
78. Karvetti, RL & Knuts, LR (1985) Validity of the 24-hour dietary recall. J Am Diet Assoc 85, 14371442.
79. Rose, G (2001) Sick individuals and sick populations. Int J Epidemiol 30, 427432.
80. Deharveng URC, G, Slimani, N, Southgate, DAT, et al. (1998) Comparison of nutrients in the food composition tables available in the nine European countries participating in EPIC. Eur J Clin Nutr 53, 6079.
81. Cowin, I & Emmett, P (1999) The effect of missing data in the supplements to McCance and Widdowson’s food tables on calculated nutrient intakes. Eur J Clin Nutr 53, 891894.
82. Meltzer, HM, Brantsaeter, AL, Ydersbond, TA, et al. (2008) Methodological challenges when monitoring the diet of pregnant women in a large study: experiences from the Norwegian Mother and Child Cohort Study (MoBa). Matern Child Nutr 4, 1427.
83. Black, AE & Cole, TJ (2001) Biased over- or under-reporting is characteristic of individuals whether over time or by different assessment methods. J Am Diet Assoc 101, 7080.
84. Brantsaeter, AL, Haugen, M, Alexander, J, et al. (2008) Validity of a new food frequency questionnaire for pregnant women in the Norwegian Mother and Child Cohort Study (MoBa). Matern Child Nutr 4, 2843.
85. Byers, T (2001) Food frequency dietary assessment: how bad is good enough? Am J Epidemiol 154, 10871088.
86. Hebert, JR, Clemow, L, Pbert, L, et al. (1995) Social desirability bias in dietary self-report may compromise the validity of dietary intake measures. Int J Epidemiol 24, 389398.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Type Description Title
WORD
Supplementary materials

Sharma et al. supplementary material 1
Supplementary Table

 Word (37 KB)
37 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 20
Total number of PDF views: 163 *
Loading metrics...

Abstract views

Total abstract views: 1680 *
Loading metrics...

* Views captured on Cambridge Core between 10th January 2018 - 23rd April 2018. This data will be updated every 24 hours.