Skip to main content Accessibility help
×
Home

Lactobacillus helveticus and Bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model

  • Stéphanie-Anne Girard (a1) (a2), Thierno Madjou Bah (a1), Sévan Kaloustian (a1) (a2), Laura Lada-Moldovan (a1) (a2), Isabelle Rondeau (a1) (a2), Thomas A. Tompkins (a3), Roger Godbout (a1) (a4) and Guy Rousseau (a1) (a2)...

Abstract

Myocardial infarction (MI) stimulates the release of pro-inflammatory substances that induce apoptosis in the limbic system. Pro-inflammatory cytokines are considered as the root cause of apoptosis, although the mechanism is not fully explained and/or understood at this time. In addition, depression may induce gastrointestinal perturbations that maintain the elevated levels of pro-inflammatory cytokines. It has been shown that some specific probiotic formulations may reduce gastrointestinal problems induced by stress and the pro/anti-inflammatory cytokine ratio. Therefore, we hypothesised that probiotics, when given prophylactically, may diminish the apoptosis propensity in the limbic system following a MI. Male adult Sprague–Dawley rats were given probiotics (Lactobacillus helveticus and Bifidobacterium longum in combination) or placebo in their drinking-water for four consecutive weeks. A MI was then induced in the rats by occluding the left anterior coronary artery for 40 min. Rats were killed following a 72 h reperfusion period. Infarct size was not different in the two groups. Bax/Bcl-2 (pro-apoptotic/anti-apoptotic) ratio and caspase-3 (pro-apoptotic) activity were reduced in the amygdala (lateral and medial), as well as in the dentate gyrus in the probiotics group when compared with the placebo. Akt activity (anti-apoptotic) was increased in these same three regions. No significant difference was observed in Ca1 and Ca3 for the different markers measured. In conclusion, the probiotics L. helveticus and B. longum, given in combination as preventive therapy, reduced the predisposition of apoptosis found in different cerebral regions following a MI.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Lactobacillus helveticus and Bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Lactobacillus helveticus and Bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Lactobacillus helveticus and Bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Guy Rousseau, fax +1 514 338 2694, email guy.rousseau@umontreal.ca

References

Hide All
1Francis, J, Chu, Y, Johnson, AK, et al. (2004) Acute myocardial infarction induces hypothalamic cytokine synthesis. Am J Physiol 286, H2264H2271.
2Francis, J, Zhang, Z-H, Weiss, RM, et al. (2004) Neural regulation of the proinflammatory cytokine response to acute myocardial infarction. Am J Physiol 287, H791H797.
3Wann, BP, Bah, TM, Kaloustian, S, et al. (2009) Behavioural signs of depression and apoptosis in the limbic system following myocardial infarction: effects of sertraline. J Psychopharmacol 23, 451459.
4Wann, BP, Boucher, M, Kaloustian, S, et al. (2006) Apoptosis detected in the amygdala following myocardial infarction in the rat. Biol Psychiatry 59, 430433.
5Wann, BP, Bah, TM, Boucher, M, et al. (2007) Vulnerability for apoptosis in the limbic system after myocardial infarction in rats: a possible model for human postinfarct major depression. J Psychiatry Neurosci 32, 1116.
6Frasure-Smith, N, Lesperance, F & Talajic, M (1993) Depression following myocardial infarction. Impact on 6-month survival. JAMA 270, 18191825.
7Lesperance, F, Frasure-Smith, N, Talajic, M, et al. (2002) Five-year risk of cardiac mortality in relation to initial severity and one-year changes in depression symptoms after myocardial infarction. Circulation 105, 10491053.
8Mawdsley, JE & Rampton, DS (2005) Psychological stress in IBD: new insights into pathogenic and therapeutic implications. Gut 54, 14811491.
9Monnikes, H, Tebbe, JJ, Hildebrandt, M, et al. (2001) Role of stress in functional gastrointestinal disorders. Evidence for stress-induced alterations in gastrointestinal motility and sensitivity. Dig Dis 19, 201211.
10Gareau, MG, Silva, MA & Perdue, MH (2008) Pathophysiological mechanisms of stress-induced intestinal damage. Curr Mol Med 8, 274281.
11Maes, M, Kubera, M & Leunis, JC (2008) The gut–brain barrier in major depression: intestinal mucosal dysfunction with an increased translocation of LPS from gram negative enterobacteria (leaky gut) plays a role in the inflammatory pathophysiology of depression. Neuro Endocrinol Lett 29, 117124.
12Lammers, KM, Brigidi, P, Vitali, B, et al. (2003) Immunomodulatory effects of probiotic bacteria DNA: IL-1 and IL-10 response in human peripheral blood mononuclear cells. FEMS Immunol Med Microbiol 38, 165172.
13Yan, F & Polk, DB (2002) Probiotic bacterium prevents cytokine-induced apoptosis in intestinal epithelial cells. J Biol Chem 277, 5095950965.
14Diop, L, Guillou, S & Durand, H (2008) Probiotic food supplement reduces stress-induced gastrointestinal symptoms in volunteers: a double-blind, placebo-controlled, randomized trial. Nutr Res 28, 15.
15Sherman, PM, Johnson-Henry, KC, Yeung, HP, et al. (2005) Probiotics reduce enterohemorrhagic Escherichia coli O157:H7- and enteropathogenic E. coli O127:H6-induced changes in polarized T84 epithelial cell monolayers by reducing bacterial adhesion and cytoskeletal rearrangements. Infect Immun 73, 51835188.
16Gareau, MG, Jury, J, MacQueen, G, et al. (2007) Probiotic treatment of rat pups normalises corticosterone release and ameliorates colonic dysfunction induced by maternal separation. Gut 56, 15221528.
17Wallace, TD, Bradley, S, Buckley, ND, et al. (2003) Interactions of lactic acid bacteria with human intestinal epithelial cells: effects on cytokine production. J Food Prot 66, 466472.
18Haskey, N & Dahl, WJ (2009) Synbiotic therapy improves quality of life and reduces symptoms in pediatric ulcerative colitis. Infant Child Adoles Nutr 1, 8893.
19Paxinos, G & Watson, C (1986) The Rat Brain in Stereotaxic Coordinates. San Diego, CA: Academic Press.
20Varghese, AK, Verdu, EF, Bercik, P, et al. (2006) Antidepressants attenuate increased susceptibility to colitis in a murine model of depression. Gastroenterology 130, 17431753.
21Banks, WA (2006) The blood–brain barrier as a regulatory interface in the gut–brain axes. Physiol Behav 89, 472476.
22Verdu, EF, Bercik, P, Huang, XX, et al. (2008) The role of luminal factors in the recovery of gastric function and behavioral changes after chronic Helicobacter pylori infection. Am J Physiol Gastrointest Liver Physiol 295, G664G670.
23Ng, SC, Hart, AL, Kamm, MA, et al. (2009) Mechanisms of action of probiotics: recent advances. Inflamm Bowel Dis 15, 300310.
24Bai, AP, Ouyang, Q, Xiao, XR, et al. (2006) Probiotics modulate inflammatory cytokine secretion from inflamed mucosa in active ulcerative colitis. Int J Clin Pract 60, 284288.
25Boucher, M, Wann, BP, Kaloustian, S, et al. (2006) Reduction of apoptosis in the amygdala by an A2A adenosine receptor agonist following myocardial infarction. Apoptosis 11, 10671074.
26Adams, JM (2003) Ways of dying: multiple pathways to apoptosis. Genes Dev 17, 24812495.
27Sugawara, T, Fujimura, M, Noshita, N, et al. (2004) Neuronal death/survival signaling pathways in cerebral ischemia. NeuroRx 1, 1725.
28Reyland, ME (2007) Protein kinase C and apoptosis. Apoptosis, Cell Signaling, and Human Diseases, pp. 3155 [Srivastava, R, editor]. Totowa, NJ: Humana Press.
29Datta, K, Bellacosa, A, Chan, TO, et al. (1996) Akt is a direct target of the phosphatidylinositol 3-kinase. J Biol Chem 271, 3083530839.
30Datta, SR, Dudek, H, Tao, X, et al. (1997) Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91, 231241.
31Lawlor, MA & Alessi, DR (2001) PKB/Akt: a key mediator of cell proliferation, survival and insulin responses? J Cell Sci 114, 29032910.
32Morley, S, Wagner, J, Kauppinen, K, et al. (2007) Requirement for Akt-mediated survival in cell transformation by the dbl oncogene. Cell Signal 19, 211218.
33Yan, F, Cao, H, Cover, TL, et al. (2007) Soluble proteins produced by probiotic bacteria regulate intestinal epithelial cell survival and growth. Gastroenterology 132, 562575.
34de Lorgeril, M, Rousseau, G, Basmadjian, A, et al. (1990) Spacial and temporal profiles of neutrophil accumulation in the reperfused ischemic myocardium. Am J Cardiovasc Pathol 3, 143154.
35Vinten-Johansen, J (2004) Involvement of neutrophils in the pathogenesis of lethal myocardial reperfusion injury. Cardiovasc Res 61, 481497.
36Gu, Q, Yang, XP, Bonde, P, et al. (2006) Inhibition of TNF-alpha reduces myocardial injury and proinflammatory pathways following ischemia-reperfusion in the dog. J Cardiovasc Pharmacol 48, 320328.
37Maekawa, N, Wada, H, Kanda, T, et al. (2002) Improved myocardial ischemia/reperfusion injury in mice lacking tumor necrosis factor-alpha. J Am Coll Cardiol 39, 12291235.
38Deuchar, GA, Opie, LH & Lecour, S (2007) TNFalpha is required to confer protection in an in vivo model of classical ischaemic preconditioning. Life Sci 80, 16861691.
39Dawn, B, Guo, Y, Rezazadeh, A, et al. (2004) Tumor necrosis factor-alpha does not modulate ischemia/reperfusion injury in naive myocardium but is essential for the development of late preconditioning. J Mol Cell Cardiol 37, 5161.
40McVey, M, Perrone, MH & Clark, KL (1999) Does tumor necrosis factor-alpha (TNF-alpha) contribute to myocardial reperfusion injury in anesthetized rats? Gen Pharmacol 32, 4145.

Keywords

Related content

Powered by UNSILO

Lactobacillus helveticus and Bifidobacterium longum taken in combination reduce the apoptosis propensity in the limbic system after myocardial infarction in a rat model

  • Stéphanie-Anne Girard (a1) (a2), Thierno Madjou Bah (a1), Sévan Kaloustian (a1) (a2), Laura Lada-Moldovan (a1) (a2), Isabelle Rondeau (a1) (a2), Thomas A. Tompkins (a3), Roger Godbout (a1) (a4) and Guy Rousseau (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.