Skip to main content
×
×
Home

Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications

  • Klaas D. Kussendrager (a1) and A. C. M. van Hooijdonk (a1)
Abstract

Lactoperoxidase (LP) is one of the most prominent enzymes in bovine milk and catalyses the inactivation of a wide range of micro-organisms in the lactoperoxidase system (LP-s). LP-systems are also identified as natural antimicrobial systems in human secretions such as saliva, tear-fluid and milk and are found to be harmless to mammalian cells. The detailed molecular structure of LP is identified and the major products generated by the LP-s and their antimicrobial action have been elucidated for the greater part. In this paper several aspects of bovine LP and LP-s are discussed, including physico-chemical properties, occurrence in milk and colostrum and mechanisms of action. Since the introduction of industrial processes for the isolation of LP from milk and whey the interest in this enzyme has increased considerably and attention will be paid to potential and actual applications of LP-systems as biopreservatives in food and other products.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Lactoperoxidase: physico-chemical properties, occurrence, mechanism of action and applications
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Klaas D. Kussendrager, email kussendr@dmv-international.com
References
Hide All
Bardsley, WC (1985) Steady-state kinetics of lactoperoxidase-catalysed reactions. In The Lactoperoxidase System, Chemistry and Biological Significance, pp. 5583 [Pruit, KM and Tenovuo, JO, editors]. New York: Marcel Dekker .
Booth, KS, Kimura, S, Lee, HC, Ikeda-Saito, M and & Caughey, WS (1989) Bovine myeloperoxidase and lactoperoxidase each contain a high affinity binding site for calcium. Biochemical and Biophysical Research Communications 160, 879902.
Boots, MicroCheck (1992) Natural biocide comes fresh from the dairy Cosmetics & Toiletries Manufacturers & Suppliers (CTMS) 6–2, 35.
Cals, MM, Mailliart, P, Brignon, G, Anglade, P & Ribadeau Dumas, B (1991) Primary structure of bovine lactoperoxidase, a fourth member of a mammalian heme peroxidase family. European Journal of Biochemistry 198, 733738.
Carlstrom, A (1969) Lactoperoxidase, Identification of multiple molecular forms and their relationships. Acta Chemica Scandinavica 23, 171184.
de Wit, JN & van Hooydonk, ACM (1996) Structure, functions and applications of lactoperoxidase in natural antimicrobial systems. Netherlands Milk & Dairy Journal 50, 227244.
Dosako, S (1991) Lactic acid bacterium starter containing peroxidase, fermented milk product, and production thereof European Patent Application.
Ekstrand, B (1994) Lactoperoxidase and lactoferrin. In Natural Antimicrobial Systems and Food Preservation, pp.1563 [Dillon, VM and Board, RG, editors] Wallingford: CAB International.
Godfrey, DC (1990) Anti-microbial compositions European Patent Specification.
Guthrie, WG (1992) A novel adaptation of a naturally occurring antimicrobial system for cosmetic protection. SOFW-Journal 118, 556562.
Heràndez, CMM, van Markwijk, BW & Vreeman, HJ (1990) Isolation and properties of lactoperoxidase from bovine milk. Netherlands Milk and Dairy Journal 44, 213231.
Hoogendoorn, H (1985) Activation of the salivary peroxidase antimicrobial system: clinical studies. In The Lactoperoxidase System, Chemistry and Biological Significance, pp.217227 [Pruitt, KM and Tenovuo, JO, editors].New York: Marcel Dekker.
Hu, S, Treat, RW & Kincaid, JR (1993) Distinct heme active-site structure in lactoperoxidase revealed by resonance raman spectroscopy. Biochemistry 32, 1012510130.
Kiermeier, F & Kayser, C (1960) Zur Kenntnis der Lactoperoxidase. Zeitschrift für Lebensmittel-Untersuchung und-Forschung 112, 481498.
Korhonen, H (1977) Antimicrobial factors in bovine colostrum. Journal of the Scientific Agriculture Society of Finland 49, 434447.
Korhonen, HJ & Reiter, B (1983) Production of H2O2 by bovine blood and milk polymorphonuclear leucocytes. Acta Microbiologica Polonica 32, 5364.
Modi, S, Behere, DV & Mitra, S (1989) Binding of thiocyanate to lactoperoxidase: 1H and 15N nuclear resonance studies. Biochemistry 28, 46894694.
Nakada, M, Dosako, S, Hirano, R, Ooka, M & Nakajima, I (1996) Lactoperoxidase suppresses acid production in yoghurt during storage under refrigeration. International Dairy Journal 6, 3342.
Paul, KG (1963) Peroxidases The Enzymes, pp.27274Boyer, PD, Lardy, H and Myrback, K, editors]. New York: Academic Press.
Paul, KG & Ohlsson, PI (1985) The chemical structure of lactoperoxidase. In The Lactoperoxidase System, Chemistry and Biological Significance, pp.1529 [Pruitt, KM and Tenovuo, JO, editors] New York: Marcel Dekker.
Pellico, MA & Montgomery, RE (1989) Di-enzymatic dentrifice European Patent Specification.
Pruitt, KM & Kamau, DN (1993) Quantitative analysis of bovine lactoperoxidase system components and of the effects of the activated system on bacterial growth and survival. In Proceedings of the IDF Seminar Indigenous Antimicrobial Agents of Milk, Recent Developments, pp. 7387.
Reiter, B, Härnulv, G (1984) Lactoperoxidase antibacterial system: natural occurrence, biological functions and practical applications. Journal of Food Protection 47, 724732.
Reiter, B & Perraudin, JP (1991) Lactoperoxidase: biological. In functions Peroxydases in Chemistry and Biology, pp.143180. Boca Raton: CRC Press.
Sievers, G (1979) The prosthetic group of milk peroxidase is protehym IX. Biochimica et Biophysica Acta 579, 181190.
Sievers, G (1980) Structure of milk lactoperoxidase. A study using circular dichroism and difference absorption spectroscopy. Biochimica et Biophysica Acta 624, 249259.
Thanabal, V & La Mar, GN (1989) A nuclear Overhauser effect investigation of the molecular and electronic structure of the heme crevice in lactoperoxidase. Biochemistry 28, 70387044.
Thomas, EL (1985) Products of lactoperoxidase-catalyzed oxidation of thiocyanate and halides. In The Lactoperoxidase System, Chemistry and Biological Significance, pp.3153 [Pruitt, KM and Tenovuo, JO, editors]. New York: Marcel Dekker.
Wolfson, LM & Sumner, SS (1993) Antimicrobial activity of the lactoperoxidase system. A review. Journal of Food Protection 56, 887892.
Zeng, J & Fenna, RE (1992) X-ray crystal structure of canine myeloperoxidase at 3 Å resolution. Journal of Molecular Biology 226, 185207.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords:

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 516 *
Loading metrics...

Abstract views

Total abstract views: 670 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 20th June 2018. This data will be updated every 24 hours.