Skip to main content Accessibility help
×
×
Home

Longitudinal selenium status in healthy British adults: assessment using biochemical and molecular biomarkers

  • Roger A. Sunde (a1), Elaine Paterson (a1) (a2), Jacqueline K. Evenson (a1), Kimberly M. Barnes (a1), Julie A. Lovegrove (a2) and Michael H. Gordon (a2)...

Abstract

Human selenium (Se) requirements are currently based on biochemical markers of Se status. In rats, tissue glutathione peroxidase-1 (Gpx1) mRNA levels can be used effectively to determine Se requirements; blood Gpx1 mRNA levels decrease in Se-deficient rats, so molecular biology-based markers have potential for human nutrition assessment. To study the efficacy of molecular biology markers for assessing Se status in humans, we conducted a longitudinal study on 39 subjects (age 45 ± 11) in Reading, UK. Diet diaries (5 day) and blood were obtained from each subject at 2, 8, 17 and 23 weeks, and plasma Se, glutathione peroxidase (Gpx3) enzyme activity, and selenoprotein mRNA levels were determined. There were no significant longitudinal effects on Se biomarkers. Se intake averaged 48 ± 14 μg/d. Plasma Se concentrations averaged 1·13 ± 0·16 μmol/l. Plasma Se v. energy-corrected Se intake (ng Se/kJ/d) was significantly correlated, but neither Gpx3 activity v. Se intake (ng Se/kJ/d) nor Gpx3 activity v. plasma Se was significantly correlated. Collectively, this indicates that subjects were on the plateaus of the response curves. Selenoprotein mRNAs were quantitated in total RNA isolated from whole blood, but mRNA levels for Gpx1, selenoprotein H, and selenoprotein W (all highly regulated by Se in rodents), as well selenoprotein P, Gpx3, and phospholipid hydroperoxide glutathione peroxidase were also not significantly correlated with plasma Se. Thus selenoprotein molecular biomarkers, as well as traditional biochemical markers, are unable to further distinguish differences in Se status in these Se replete subjects. The efficacy of molecular biomarkers to detect Se deficiency needs to be tested in Se-deficient populations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Longitudinal selenium status in healthy British adults: assessment using biochemical and molecular biomarkers
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Longitudinal selenium status in healthy British adults: assessment using biochemical and molecular biomarkers
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Longitudinal selenium status in healthy British adults: assessment using biochemical and molecular biomarkers
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Prof. Roger A. Sunde, fax +1 608-262-5860, email sunde@nutrisci.wisc.edu

References

Hide All
1Clark, LC, Combs, GF, Turnbull, BW, et al. (1996) Effects of selenium supplementation for cancer prevention in patients with carcinoma of the skin. JAMA 276, 19571963.
2Broadley, MR, White, PJ, Bryson, RJ, et al. (2006) Biofortification of UK food crops with selenium. Proc Nutr Soc 65, 169181.
3Rayman, MP (2000) The importance of selenium to human health. Lancet 356, 233241.
4Elsom, R, Sanderson, P, Hesketh, JE, Jackson, MJ, Fairweather-Tait, SJ, Akesson, B, Handy, J & Arthur, JR (2006) Functional markers of selenium status: UK Foods Standards Agency workshop report. Br J Nutr 96, 980984.
5Rayman, MP (2008) Food-chain selenium and human health: emphasis on intake. Br J Nutr 115.
6Department of Health (1991) Dietary Reference Values for Food Energy and Nutrients for the United Kingdom. London: HMSO.
7Food and Nutrition Board (2000) Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium and Carotenoids. Washington, DC: National Academy Press.
8Ministry of Health (2006) Nutrient Reference Values for Australia and New Zealand. Canberra: NHMRC.
9World Health Organization (1996) Selenium. In Trace Elements in Human Nutrition and Health, pp. 105122Geneva, Switzerland: World Health Organization.
10Duffield-Lillico, AJ, Slate, EH, Reid, ME, et al. (2003) Selenium supplementation and secondary prevention of nonmelanoma skin cancer in a randomized trial. J Natl Cancer Inst 95, 14771481.
11Stranges, S, Marshall, JR, Trevisan, M, Natarajan, R, Donahue, RP, Combs, GF, Farinaro, E, Clark, LC & Reid, ME (2006) Effects of selenium supplementation on cardiovascular disease incidence and mortality: secondary analyses in a randomized clinical trial. Am J Epidemiol 163, 694699.
12Flores-Mateo, G, Navas-Acien, A, Pastor-Barriuso, R & Guallar, E (2006) Selenium and coronary heart disease: a meta-analysis. Am J Clin Nutr 84, 762773.
13Bjelakovic, G, Nikolova, D, Gluud, LL, Simonetti, RG & Gluud, C (2007) Mortality in randomized trials of antioxidant supplements for primary and secondary prevention: systematic review and meta-analysis. JAMA 297, 842857.
14Stranges, S, Marshall, JR, Natarajan, R, Donahue, RP, Trevisan, M, Combs, GF, Cappuccio, FP, Ceriello, A & Reid, ME (2007) Effects of long-term selenium supplementation on the incidence of type 2 diabetes: a randomized trial. Ann Intern Med 147, 217223.
15Thomson, CD (2004) Assessment of requirements for selenium and adequacy of selenium status: a review. Eur J Clin Nutr 58, 391402.
16Hafeman, DG, Sunde, RA & Hoekstra, WG (1974) Effect of dietary selenium on erythrocyte and liver glutathione peroxidase in the rat. J Nutr 104, 580587.
17National Research Council (1995) Nutrient Requirements of Laboratory Animals. Washington, DC: National Academy Press.
18Lei, XG, Evenson, JK, Thompson, KM & Sunde, RA (1995) Glutathione peroxidase and phospholipid hydroperoxide glutathione peroxidase are differentially regulated in rats by dietary selenium. J Nutr 125, 14381446.
19Weiss, SL, Evenson, JK, Thompson, KM & Sunde, RA (1996) The selenium requirement for glutathione peroxidase mRNA level is half of the selenium requirement for glutathione peroxidase activity in female rats. J Nutr 126, 22602267.
20Weiss, SL, Evenson, JK, Thompson, KM & Sunde, RA (1997) Dietary selenium regulation of glutathione peroxidase mRNA and other selenium-dependent parameters in male rats. J Nutr Biochem 8, 8591.
21Sunde, RA, Evenson, JK, Thompson, KM & Sachdev, SW (2005) Dietary selenium requirements based on glutathione peroxidase-1 activity and mRNA levels and other selenium parameters are not increased by pregnancy and lactation in rats. J Nutr 135, 21442150.
22Sachdev, SW & Sunde, RA (2001) Selenium regulation of transcript abundance and relative translational efficiency of glutathione peroxidase 1 and 4 in rat liver. Biochem J 357, 851858.
23Kryukov, GV, Castellano, S, Novoselov, SV, Lobanov, AV, Zehtab, O, Guigo, R & Gladyshev, VN (2003) Characterization of mammalian selenoproteins. Science (Washington, DC) 300, 14391443.
24Sunde, RA, Barnes, KM, Raines, AM & Evenson, JK (2008) Selenium regulation of selenoproteome expression in rats. FASEB J 22, 156.1.
25Evenson, JK, Wheeler, AD, Blake, SM & Sunde, RA (2004) Selenoprotein mRNA is expressed in blood at levels comparable to major tissues in rats. J Nutr 134, 26402645.
26Arab, L (2004) Individualized nutritional recommendations: do we have the measurements needed to assess risk and make dietary recommendations? Proc Nutr Soc 63, 167172.
27Kussmann, M, Raymond, F & Affolter, M (2006) OMICS-driven biomarker discovery in nutrition and health. J Biotechnol 124, 758787.
28Janssens, AC, Gwinn, M, Bradley, LA, Oostra, BA, van Duijn, CM & Khoury, MJ (2008) A critical appraisal of the scientific basis of commercial genomic profiles used to assess health risks and personalize health interventions. Am J Hum Genet 82, 593599.
29George, TW, Paterson, E, Waroonphan, S, Gordon, MH & Lovegrove, JA (2006) Effect of consumption of five portions of fruit and vegetables as juice shots on risk factors for cardiovascular disease. Proc Nutr Soc 65, 48A.
30McKown, DM & Morris, JS (1978) Rapid measurement of selenium in biological samples using instrumental neutron activation analysis. J Radioanal Chem 43, 409418.
31Avissar, N, Ornt, DB, Yagil, Y, Horowitz, S, Watkins, RH, Kerl, EA, Takahashi, K, Palmer, IS & Cohen, HJ (1994) Human kidney proximal tubules are the main source of plasma glutathione peroxidase. Am J Physiol 266, C367C375.
32Lowry, OH, Rosebrough, NJ, Farr, AL & Randall, RJ (1951) Protein measurement with the Folin phenol reagent. J Biol Chem 193, 265275.
33Ausubel, FM, Brent, R, Kingston, RE, Moore, DD, Seidman, JG, Smith, JA & Struhl, K (1989) Current Protocols in Molecular Biology. New York: Wiley.
34Peirson, SN, Butler, JN & Foster, RG (2003) Experimental validation of novel and conventional approaches to quantitative real-time PCR data analysis. Nucleic Acids Res 31, e73.
35Pfaffl, MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29, e45.
36Rotruck, JT, Pope, AL, Ganther, HE, Swanson, AB, Hafeman, DG & Hoekstra, WG (1973) Selenium: biochemical role as a component of glutathione peroxidase. Science (Washington, DC) 179, 588590.
37National Research Council (1980) Recommended Dietary Allowances. Washington, DC: National Academy of Sciences.
38Saedi, MS, Smith, CG, Frampton, J, Chambers, I, Harrison, PR & Sunde, RA (1988) Effect of selenium status on mRNA levels for glutathione peroxidase in rat liver. Biochem Biophys Res Commun 153, 855861.
39Bermano, G, Nicol, F, Dyer, JA, Sunde, RA, Beckett, GJ, Arthur, JR & Hesketh, JE (1995) Tissue-specific regulation of selenoenzyme gene expression during selenium deficiency in rats. Biochem J 311, 425430.
40Hadley, KB & Sunde, RA (2001) Selenium regulation of thioredoxin reductase activity and mRNA levels in rat liver. J Nutr Biochem 12, 693702.
41Yang, JG, Hill, KE & Burk, RF (1989) Dietary selenium intake controls rat plasma selenoprotein P concentration. J Nutr 119, 10101012.
42Wheeler, AD, Evenson, JK & Sunde, RA (2003) Differential expression of selenoprotein mRNAs in human tissues. FASEB J 17, A1096.
43Evenson, JK & Sunde, RA (2005) Glutathione peroxidase-1 mRNA expression in human blood. FASEB J 19, A1015.
44Eves, A & Gesch, B (2003) Food provision and the nutritional implications of food choices made by young adult males, in a young offenders' institution. J Hum Nutr Diet 16, 167179.
45Shortt, CT, Duthie, GG, Robertson, JD, Morrice, PC, Nicol, F & Arthur, JR (1997) Selenium status of a group of Scottish adults. Eur J Clin Nutr 51, 400404.
46Murphy, J & Cashman, KD (2002) Selenium status of Irish adults: evidence of insufficiency. Ir J Med Sci 171, 8184.
47Bates, CJ, Prentice, A, Birch, MC & Delves, HT (2007) Dependence of blood indices of selenium and mercury on estimated fish intake in a national survey of British adults. Public Health Nutr 10, 508517.
48Ghayour-Mobarhan, M, Taylor, A, New, SA, Lamb, DJ & Ferns, GA (2005) Determinants of serum copper, zinc and selenium in healthy subjects. Ann Clin Biochem 42, 364375.
49Meplan, C, Crosley, LK, Nicol, F, et al. (2007) Genetic polymorphisms in the human selenoprotein P gene determine the response of selenoprotein markers to selenium supplementation in a gender-specific manner (the SELGEN study). FASEB J 21, 30633074.
50Ravn-Haren, G, Krath, BN, Overvad, K, Cold, S, Moesgaard, S, Larsen, EH & Dragsted, LO (2008) Effect of long-term selenium yeast intervention on activity and gene expression of antioxidant and xenobiotic metabolising enzymes in healthy elderly volunteers from the Danish Prevention of Cancer by Intervention by Selenium (PRECISE) Pilot Study. Br J Nutr 99, 11901198.
51Pagmantidis, V, Meplan, C, van Schothorst, EM, Keijer, J & Hesketh, JE (2008) Supplementation of healthy volunteers with nutritionally relevant amounts of selenium increases the expression of lymphocyte protein biosynthesis genes. Am J Clin Nutr 87, 181189.
52Bates, CJ, Thane, CW, Prentice, A & Delves, HT (2002) Selenium status and its correlates in a British national diet and nutrition survey: people aged 65 years and over. J Trace Elem Med Biol 16, 18.
53Rannem, T, Persson-Moschos, M, Huang, W, Staun, M & Akesson, B (1996) Selenoprotein P in patients on home parenteral nutrition. JPEN J Parenter Enteral Nutr 20, 287291.
54Xia, YM, Hill, KE & Burk, RF (1989) Biochemical studies of a selenium-deficient population in China: measurement of selenium, glutathione peroxidase and other oxidant defense indices in blood. J Nutr 119, 13181326.
55Duffield, AJ, Thomson, CD, Hill, KE & Williams, S (1999) An estimation of selenium requirements for New Zealanders. Am J Clin Nutr 70, 896903.
56Food and Nutrition Board (2000) Selenium. In Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium and Carotenoids, pp. 284324Washington, DC: National Academy Press.
57Flohé, L, Loschen, G, Günzler, WA & Eichole, E (1972) Glutathione peroxidase. V. The kinetic mechanism. Hoppe-Seyler's Z Physiol Chem 353, 987999.
58Akesson, B, Huang, W, Persson-Moschos, M, Marchaluk, E, Jacobsson, L & Lindegarde, F (1997) Glutathione peroxidase, selenoprotein P and selenium in serum of elderly subjects in relation to other biomarkers of nutritional status and food intake. J Nutr Biochem 8, 508517.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed