Skip to main content
×
×
Home

Long-term strict raw food diet is associated with favourable plasma β-carotene and low plasma lycopene concentrations in Germans

  • Ada L. Garcia (a1) (a2), Corinna Koebnick (a1) (a3), Peter C. Dagnelie (a4), Carola Strassner (a1), Ibrahim Elmadfa (a5), Norbert Katz (a6), Claus Leitzmann (a1) and Ingrid Hoffmann (a1)...
Abstract

Dietary carotenoids are associated with a reduced risk of chronic diseases. Raw food diets are predominantly plant-based diets that are practised with the intention of preventing chronic diseases by virtue of their high content of beneficial nutritive substances such as carotenoids. However, the benefit of a long-term adherence to these diets is controversial since little is known about their adequacy. Therefore, we investigated vitamin A and carotenoid status and related food sources in raw food diet adherents in Germany. Dietary vitamin A, carotenoid intake, plasma retinol and plasma carotenoids were determined in 198 (ninety-two male and 106 female) strict raw food diet adherents in a cross-sectional study. Raw food diet adherents consumed on average 95 weight% of their total food intake as raw food (approximately 1800 g/d), mainly fruits. Raw food diet adherents had an intake of 1301 retinol activity equivalents/d and 16·7 mg/d carotenoids. Plasma vitamin A status was normal in 82 % of the subjects ( ≥ 1·05 μmol/l) and 63 % had β-carotene concentrations associated with chronic disease prevention ( ≥ 0·88 μmol/l). In 77 % of subjects the lycopene status was below the reference values for average healthy populations ( < 0·45 μmol/l). Fat contained in fruits, vegetables and nuts and oil consumption was a significant dietary determinant of plasma carotenoid concentrations (β-carotene r 0·284; P < 0·05; lycopene r 0·168; P = 0·024). Long-term raw food diet adherents showed normal vitamin A status and achieve favourable plasma β-carotene concentrations as recommended for chronic disease prevention, but showed low plasma lycopene levels. Plasma carotenoids in raw food adherents are predicted mainly by fat intake.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Long-term strict raw food diet is associated with favourable plasma β-carotene and low plasma lycopene concentrations in Germans
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Long-term strict raw food diet is associated with favourable plasma β-carotene and low plasma lycopene concentrations in Germans
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Long-term strict raw food diet is associated with favourable plasma β-carotene and low plasma lycopene concentrations in Germans
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Professor Ingrid Hoffmann, fax +49 6419939059, email ingrid.hoffmann@ernaehrung.uni-giessen.de
References
Hide All
1Johnson, EJ (2002) The role of carotenoids in human health. Nutr Clin Care 5, 5665.
2Bendich, A (2004) From 1989 to 2001: what have we learned about the ‘biological actions of beta-carotene’? J Nutr 134, 225S230S.
3Nagao, A (2004) Oxidative conversion of carotenoids to retinoids and other products. J Nutr 134, 237S240S.
4Stahl, W & Sies, H (2005) Bioactivity and protective effects of natural carotenoids. Biochim Biophys Acta 1740, 101107.
5Parker, RS (1996) Absorption, metabolism, and transport of carotenoids. FASEB J 10, 542551.
6Holden, JM, Eldridge, AL, Beecher, GR, et al. (1999) Carotenoid content of U.S. foods: an update of the database. J Food Comp Anal 12, 169196.
7Hoffmann, I & Leitzmann, C (2000) Raw food diet: health benefits and risks. In Vegetables, Fruits, and Herbs in Health Promotion, pp. 293308 [Watson, RR, editor]. Boca Raton, FL: CRC Press.
8Koebnick, C, Strassner, C, Hoffmann, I & Leitzmann, C (1999) Consequences of a long-term raw food diet on body weight and menstruation: results of a questionnaire survey. Ann Nutr Metab 43, 6979.
9Koebnick, C, Garcia, AL, Dagnelie, PC, et al. (2005) Long-term consumption of a raw food diet is associated with favorable serum LDL cholesterol and triglycerides but also with elevated plasma homocysteine and low serum HDL cholesterol in humans. J Nutr 135, 23722378.
10Cunningham, E (2004) What is a raw foods diet and are there any risks or benefits associated with it? J Am Diet Assoc 104, 1623.
11Haddad, EH, Berk, LS, Kettering, JD, Hubbard, RW & Peters, WR (1999) Dietary intake and biochemical, hematologic, and immune status of vegans compared with nonvegetarians. Am J Clin Nutr 70, Suppl. 3, 586S593S.
12Bederova, A, Kudlackova, M, Simoncic, R, et al. (2000) Comparison of nutrient intake and corresponding biochemical parameters in adolescent vegetarians and non-vegetarians. Cas Lek Cesk 139, 396400.
13van Het Hof, KH, West, CE, Weststrate, JA & Hautvast, JG (2000) Dietary factors that affect the bioavailability of carotenoids. J Nutr 130, 503506.
14Zaripheh, S & Erdman, JW Jr (2002) Factors that influence the bioavailability of xanthophylls. J Nutr 132, 531S534S.
15Federal Institute for Health Protection of Consumers and Veterinary Medicine (1999) The German Food Code and Nutrient Data Base (BLS II.3): Conception, Structure and Documentation of the Data Base blsdat. Berlin, Germany: Federal Institute for Health Protection of Consumers and Veterinary Medicine.
16Institute of Medicine (2001) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. Washington, DC: Institute of Medicine.
17Vuilleumier, JP, Keller, HE, Gysel, D & Hunziker, F (1983) Clinical chemical methods for the routine assessment of the vitamin status in human populations. Part I: The fat-soluble vitamins A and E, and beta-carotene. Int J Vitam Nutr Res 53, 265272.
18Jakob, E & Elmadfa, I (1995) Rapid HPLC assay for the assessment of vitamin K1, A, E and beta-carotene status in children (7–19 years). Int J Vitam Nutr Res 65, 3135.
19Jakob, E & Elmadfa, I (1995) Application of a simplified HPLC assay for the determination of phylloquinone (vitamin K1) in animal and plant food items. Food Chem 56, 87.
20Gibson, R (1990) Principles of Nutritional Assessment. New York: Oxford University Press.
21Pilch, SM (1987) Analysis of vitamin A data from the health and nutrition examination surveys J Nutr 117, 634640.
22Diplock, AT (1991) Antioxidant nutrients and disease prevention: an overview. Am J Clin Nutr 53, Suppl. 1, 189S193S.
23Biesalski, H, Bohles, H, Esterbauer, H, Furst, P, Gey, P, Hundsdorfer, G, Kasper, H, Sies, H & Weisburger, J (1997) Antioxidant vitamins in prevention. Clin Nutr 16, 151155.
24Gey, KF (1993) Prospects for the prevention of free radical disease, regarding cancer and cardiovascular disease. Br Med Bull 49, 679699.
25West, S, Vitale, S, Hallfrisch, J, et al. (1994) Are antioxidants or supplements protective for age-related macular degeneration? Arch Ophthalmol 112, 222227.
26Ganji, V & Kafai, MR (2005) Population determinants of serum lycopene concentrations in the United States: data from the Third National Health and Nutrition Examination Survey, 1988–1994. J Nutr 135, 567572.
27Mensink, GB & Beitz, R (2004) Food and nutrient intake in East and West Germany, 8 years after the reunification – The German Nutrition Survey 1998. Eur J Clin Nutr 58, 10001010.
28German Nutrition Society, Austrian Nutrition Society, Swiss Society for Nutrition Research & Swiss Nutrition Association (editors) (2002) Reference Values for Nutrient Intake, 1st ed. Bonn: German Nutrition Society..
29Palace, VP, Khaper, N, Qin, Q & Singal, PK (1999) Antioxidant potentials of vitamin A and carotenoids and their relevance to heart disease. Free Radic Biol Med 26, 746761.
30Astorg, P (1997) Food carotenoids and cancer prevention: an overview of current research. Trends Food Sci Technol 8, 406413.
31Tavani, A & La Vecchia, C (1999) Beta-carotene and risk of coronary heart disease. A review of observational and intervention studies. Biomed Pharmacother 53, 409416.
32Rauma, AL & Mykkanen, H (2000) Antioxidant status in vegetarians versus omnivores. Nutrition 16, 111119.
33Rider, AA, Calkins, BM, Arthur, RS & Nair, PP (1984) Diet, nutrition intake, and metabolism in populations at high and low risk for colon cancer. Concordance of nutrient information obtained by different methods. Am J Clin Nutr 40, Suppl. 4, 906913.
34Yeum, KJ, Booth, SL, Sadowski, JA, et al. (1996) Human plasma carotenoid response to the ingestion of controlled diets high in fruits and vegetables. Am J Clin Nutr 64, 594602.
35Tyssandier, V, Reboul, E, Dumas, JF, et al. (2003) Processing of vegetable-borne carotenoids in the human stomach and duodenum. Am J Physiol Gastrointest Liver Physiol 284, G913G923.
36Brown, MJ, Ferruzzi, MG, Nguyen, ML, et al. (2004) Carotenoid bioavailability is higher from salads ingested with full-fat than with fat-reduced salad dressings as measured with electrochemical detection. Am J Clin Nutr 80, 396403.
37Unlu, NZ, Bohn, T, Clinton, SK & Schwartz, SJ (2005) Carotenoid absorption from salad and salsa by humans is enhanced by the addition of avocado or avocado oil. J Nutr 135, 431436.
38Bazzano, LA, He, J, Ogden, LG, et al. (2002) Fruit and vegetable intake and risk of cardiovascular disease in US adults: the first National Health and Nutrition Examination Survey Epidemiologic Follow-up Study. Am J Clin Nutr 76, 9399.
39World Health Organization (1990) Diet, Nutrition and the Prevention of Chronic Diseases. Geneva: WHO.
40Kennedy, E & Davis, CA (2000) Dietary guidelines 2000 – the opportunity and challenges for reaching the consumer. J Am Diet Assoc 100, 14621465.
41Krauss, RM, Eckel, RH, Howard, B, et al. (2000) AHA Dietary Guidelines: revision 2000: A statement for healthcare professionals from the Nutrition Committee of the American Heart Association. Circulation 102, 22842299.
42Rock, CL, Lovalvo, JL, Emenhiser, C, Ruffin, MT, Flatt, SW & Schwartz, SJ (1998) Bioavailability of beta-carotene is lower in raw than in processed carrots and spinach in women. J Nutr 128, 913916.
43Castenmiller, JJ, West, CE, Linssen, JP, van het Hof, KH & Voragen, AG (1999) The food matrix of spinach is a limiting factor in determining the bioavailability of beta-carotene and to a lesser extent of lutein in humans. J Nutr 129, 349355.
44Erdman, JW Jr & Poneros-Schneier, AG (1988) Nutrient interactions involving vitamins and minerals. Bol Asoc Med P R 80, 291293.
45Muller, H, Bub, A, Watzl, B & Rechkemmer, G (1999) Plasma concentrations of carotenoids in healthy volunteers after intervention with carotenoid-rich foods. Eur J Nutr 38, 3544.
46Nebeling, LC, Forman, MR, Graubard, BI & Snyder, RA (1997) Changes in carotenoid intake in the United States: the 1987 and 1992 National Health Interview Surveys. J Am Diet Assoc 97, 991996.
47Pelz, R, Schmidt-Faber, B & Heseker, H (1998) Carotenoid intake in the German National Food Consumption Survey. Z Ernahrungswiss 37, 319327.
48Porrini, M, Riso, P & Testolin, G (1998) Absorption of lycopene from single or daily portions of raw and processed tomato. Br J Nutr 80, 353361.
49Bohm, V & Bitsch, R (1999) Intestinal absorption of lycopene from different matrices and interactions to other carotenoids, the lipid status, and the antioxidant capacity of human plasma. Eur J Nutr 38, 118125.
50Schneider, R, Eberhardt, W, Heseker, H & Kubler, W (1995) Vitamin intake and vitamin status in Germany. Bibl Nutr Dieta 52, 116127.
51Wang, Z, Yin, S, Zhao, X, Russell, RM & Tang, G (2004) Beta-carotene–vitamin A equivalence in Chinese adults assessed by an isotope dilution technique. Br J Nutr 91, 121131.
52Riedl, J, Linseisen, J, Hoffmann, J & Wolfram, G (1999) Some dietary fibers reduce the absorption of carotenoids in women. J Nutr 129, 21702176.
53Olmedilla, B, Granado, F, Blanco, I & Rojas-Hidalgo, E (1994) Seasonal and sex-related variations in six serum carotenoids, retinol, and alpha-tocopherol. Am J Clin Nutr 60, 106110.
54Armstrong, NC, Paganga, G, Brunner, E, et al. (1997) Reference values for alpha-tocopherol and beta-carotene in the Whitehall II Study. Free Radic Res 27, 207219.
55Vogel, S, Contois, JH, Tucker, KL, Wilson, PW, Schaefer, EJ & Lammi-Keefe, CJ (1997) Plasma retinol and plasma and lipoprotein tocopherol and carotenoid concentrations in healthy elderly participants of the Framingham Heart Study. Am J Clin Nutr 66, 950958.
56Brady, WE, Mares-Perlman, JA, Bowen, P & Stacewicz-Sapuntzakis, M (1996) Human serum carotenoid concentrations are related to physiologic and lifestyle factors. J Nutr 126, 129137.
57Dutra-de-Oliveira, JE, Favaro, RM, Leonardo, IR, Jordao Junior, AA & Vannucchi, H (1998) Absorption, by humans, of beta-carotene from fortified soybean oil added to rice: effect of heat treatment. J Am Coll Nutr 17, 361365.
58Tyssandier, V, Cardinault, N, Caris-Veyrat, C, et al. (2002) Vegetable-borne lutein, lycopene, and beta-carotene compete for incorporation into chylomicrons, with no adverse effect on the medium-term (3-wk) plasma status of carotenoids in humans. Am J Clin Nutr 75, 526534.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed