Skip to main content Accessibility help
×
Home

Metabolic responses to high-fat diets rich in MUFA v. PUFA

  • Kristine R. Polley (a1), Mary K. Miller (a2), Mollie Johnson (a2), Roger Vaughan (a2), Chad M. Paton (a1) (a3) and Jamie A. Cooper (a1) (a2)...

Abstract

Dietary fatty acid (FA) composition may influence metabolism, possibly affecting weight management. The purpose of this study was to compare the effects of a 5-d diet rich in PUFA v. MUFA. A total of fifteen normal-weight men participated in a randomised cross-over design with two feeding trials (3 d lead-in diet, pre-diet visit, 5-d PUFA- or MUFA-rich diet, post-diet visit). The 5-d diets (50 % fat) were rich in either PUFA (25 % of energy) or MUFA (25 % of energy). At pre- and post-diet visits, subjects consumed breakfast and lunch test meals, rich in the FA for that 5-d diet. Indirect calorimetry was used for 4 h after each meal. There were no treatment differences in fasting metabolism acutely or after the 5-d diet. For acute meal responses before diet, RER was higher for PUFA v. MUFA (0·86 (sem 0·01) v. 0·84 (sem 0·01), P<0·05), whereas diet-induced thermogenesis (DIT) was lower for PUFA v. MUFA (18·91 (SEM 1·46) v. 21·46 (SEM 1·34) kJ, P<0·05). After the 5-d diets, the change in RER was different for PUFA v. MUFA (−0·02 (sem 0·01) v. 0·00 (sem 0·01), P<0·05). Similarly, the change in fat oxidation was greater for PUFA v. MUFA (0·18 (sem 0·07) v. 0·04 (sem 0·06) g, P<0·05). In conclusion, acutely, a MUFA-rich meal results in lower RER and greater DIT. However, after a 5-d high-fat diet, the change in metabolic responses was greater in the PUFA diet, showing the metabolic adaptability of a PUFA-rich diet.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Metabolic responses to high-fat diets rich in MUFA v. PUFA
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Metabolic responses to high-fat diets rich in MUFA v. PUFA
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Metabolic responses to high-fat diets rich in MUFA v. PUFA
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: J. A. Cooper, fax +1 706 542 5059, email jamie.cooper@uga.edu

References

Hide All
1. Dietary Guidelines Advisory Committee (2015) Scientific Report of the 2015 Dietary Guidelines Advisory Committee. Washington, DC: USDA and US Department of Health and Human Services.
2. Swinburn, BA, Caterson, I, Seidell, JC, et al. (2004) Diet, nutrition and the prevention of excess weight gain and obesity. Public Health Nutr 7, 123146.
3. Krishnan, S & Cooper, JA (2014) Effect of dietary fatty acid composition on substrate utilization and body weight maintenance in humans. Eur J Nutr 53, 691710.
4. Raatz, SK, Conrad, Z, Johnson, LK, et al. (2017) Relationship of the reported intakes of fat and fatty acids to body weight in US adults. Nutrients 9, 438.
5. Westerterp, KR, Smeets, A, Lejeune, MP, et al. (2008) Dietary fat oxidation as a function of body fat. Am J Clin Nutr 87, 132135.
6. Jones, PJ & Schoeller, DA (1988) Polyunsaturated: saturated ratio of diet fat influences energy substrate utilization in the human. Metabolism 37, 145151.
7. Leyton, J, Drury, P & Crawford, M (1987) Differential oxidation of saturated and unsaturated fatty acids in vivo in the rat. Br J Nutr 57, 383393.
8. Piers, LS, Walker, KZ, Stoney, RM, et al. (2002) The influence of the type of dietary fat on postprandial fat oxidation rates: monounsaturated (olive oil) vs saturated fat (cream). Int J Obes Relat Metab Disord 26, 814821.
9. Jones, P, Pencharz, P & Clandinin, M (1985) Absorption of 13C-labeled stearic, oleic, and linoleic acids in humans: application to breath tests. J Lab Clin Med 105, 647652.
10. DeLany, JP, Windhauser, MM, Champagne, CM, et al. (2000) Differential oxidation of individual dietary fatty acids in humans. Am J Clin Nutr 72, 905911.
11. Jones, PJ, Jew, S & AbuMweis, S (2008) The effect of dietary oleic, linoleic, and linolenic acids on fat oxidation and energy expenditure in healthy men. Metabolism 57, 11981203.
12. Casas-Agustench, P, Lopez-Uriarte, P, Bullo, M, et al. (2009) Acute effects of three high-fat meals with different fat saturations on energy expenditure, substrate oxidation and satiety. Clin Nutr 28, 3945.
13. Clevenger, HC, Kozimor, AL, Paton, CM, et al. (2014) Acute effect of dietary fatty acid composition on postprandial metabolism in women. Exp Physiol 99, 11821190.
14. Bray, GA (1990) Obesity – a state of reduced sympathetic activity and normal or high adrenal activity (the autonomic and adrenal hypothesis revisited). Int J Obes 14, Suppl. 3, 7791; discussion 91–72.
15. Tappy, L (1996) Thermic effect of food and sympathetic nervous system activity in humans. Reprod Nutr Dev 36, 391397.
16. Soares, MJ, Cummings, SJ, Mamo, JC, et al. (2004) The acute effects of olive oil v. cream on postprandial thermogenesis and substrate oxidation in postmenopausal women. Br J Nutr 91, 245252.
17. Kien, CL, Bunn, JY & Ugrasbul, F (2005) Increasing dietary palmitic acid decreases fat oxidation and daily energy expenditure. Am J Clin Nutr 82, 320326.
18. Kien, CL & Bunn, JY (2007) Effects of palmitate and oleate on the respiratory quotient during acute feeding. Obesity (Silver Spring) 15, 16401642.
19. Piers, LS, Walker, KZ, Stoney, RM, et al. (2003) Substitution of saturated with monounsaturated fat in a 4-week diet affects body weight and composition of overweight and obese men. Br J Nutr 90, 717727.
20. van Marken Lichtenbelt, WD, Mensink, RP & Westerterp, KR (1997) The effect of fat composition of the diet on energy metabolism. Z Ernahrungswiss 36, 303305.
21. Jones, PJ, Ridgen, JE, Phang, PT, et al. (1992) Influence of dietary fat polyunsaturated to saturated ratio on energy substrate utilization in obesity. Metabolism 41, 396401.
22. Stevenson, JL, Miller, MK, Skillman, HE, et al. (2016) A PUFA-rich diet improves fat oxidation following saturated fat-rich meal. Eur J Nutr 56, 18451857.
23. Weir, JB (1949) New methods for calculating metabolic rate with special reference to protein metabolism. J Physiol 109, 19.
24. Trumbo, P, Schlicker, S, Yates, AA, et al. (2002) Dietary reference intakes for energy, carbohydrate, fiber, fat, fatty acids, cholesterol, protein and amino acids. J Am Diet Assoc 102, 16211630.
25. Frayn, KN (1983) Calculation of substrate oxidation rates in vivo from gaseous exchange. J Appl Physiol Respir Environ Exerc Physiol 55, 628634.
26. Schoffelen, PF, Westerterp, KR, Saris, WH, et al. (1997) A dual-respiration chamber system with automated calibration. J Appl Physiol 83, 20642072.
27. McCloy, U, Ryan, MA, Pencharz, PB, et al. (2004) A comparison of the metabolism of eighteen-carbon 13C-unsaturated fatty acids in healthy women. J Lipid Res 45, 474485.
28. Hodson, L, McQuaid, SE, Karpe, F, et al. (2009) Differences in partitioning of meal fatty acids into blood lipid fractions: a comparison of linoleate, oleate, and palmitate. Am J Physiol Endocrinol Metab 296, E64E71.
29. Sampath, H & Ntambi, JM (2005) Polyunsaturated fatty acid regulation of genes of lipid metabolism. Annu Rev Nutr 25, 317340.
30. Paton, CM, Vaughan, RA, Selen Alpergin, ES, et al. (2017) Dihydrosterculic acid from cottonseed oil suppresses desaturase activity and improves liver metabolomic profiles of high-fat–fed mice. Nutr Res 45, 5262.
31. Gomez, FE, Bauman, DE, Ntambi, JM, et al. (2003) Effects of sterculic acid on stearoyl-CoA desaturase in differentiating 3T3-L1 adipocytes. Biochem Biophys Res Commun 300, 316326.
32. Paton, CM & Ntambi, JM (2009) Biochemical and physiological function of stearoyl-CoA desaturase. Am J Physiol Endocrinol Metab 297, E28E37.
33. Flint, A, Helt, B, Raben, A, et al. (2003) Effects of different dietary fat types on postprandial appetite and energy expenditure. Obes Res 11, 14491455.
34. Rigacci, S & Stefani, M (2016) Nutraceutical properties of olive oil polyphenols. an itinerary from cultured cells through animal models to humans. Int J Mol Sci 17, E843.

Keywords

Metabolic responses to high-fat diets rich in MUFA v. PUFA

  • Kristine R. Polley (a1), Mary K. Miller (a2), Mollie Johnson (a2), Roger Vaughan (a2), Chad M. Paton (a1) (a3) and Jamie A. Cooper (a1) (a2)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed