Skip to main content Accessibility help
×
Home

A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate–electrolyte solution or water in healthy young men

  • Suzanne Seery (a1) and Philip Jakeman (a1) (a2)

Abstract

Appropriate rehydration and nutrient intake in recovery is a key component of exercise performance. This study investigated whether the recovery of body net fluid balance (NFB) following exercise and thermal dehydration to −2 % of body mass (BM) was enhanced by a metered rate of ingestion of milk (M) compared with a carbohydrate–electrolyte solution (CE) or water (W). In randomised order, seven active men (aged 26·2 (sd 6·1) years) undertook exercise and thermal dehydration to −2 % of BM on three occasions. A metered replacement volume of M, CE or W equivalent to 150 % of the BM loss was then consumed within 2–3 h. NFB was subsequently measured for 5 h from commencement of rehydration. A higher overall NFB in M than CE (P=0·001) and W (P=0·006) was observed, with no difference between CE and W (P=0·69). After 5 h, NFB in M remained positive (+117 (sd 122) ml) compared with basal, and it was greater than W (−539 (sd 390) ml, P=0·011) but not CE (−381 (sd 460) ml, P=0·077, d=1·6). Plasma osmolality (Posm) and K remained elevated above basal in M compared with CE and W. The change in Posm was associated with circulating pre-provasopressin (r s 0·348, P<0·001), a biomarker of arginine vasopressin, but could not account fully for the augmented NFB in M compared with CE and W. These data suggest that a metered approach to fluid ingestion acts in synergy with the nutrient composition of M in the restoration of NFB following exercise and thermal dehydration.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate–electrolyte solution or water in healthy young men
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate–electrolyte solution or water in healthy young men
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate–electrolyte solution or water in healthy young men
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: Professor P. Jakeman, fax +353 6120 2841, email phil.jakeman@ul.ie

References

Hide All
1. Cheuvront, SN, Ely, BR, Kenefick, RW, et al. (2010) Biological variation and diagnostic accuracy of dehydration assessment markers. Am J Clin Nutr 92, 565573.
2. Goulet, DB (2013) Effect of exercise-induced dehydration on endurance performance: evaluating the impact of exercise protocols on outcomes using a meta-analytic procedure. Br J Sports Med 47, 679686.
3. Cheuvront, SN & Kenefick, RW (2014) Dehydration: physiology, assessment, and performance effects. Compr Physiol 4, 257285.
4. Wall, BA, Watson, G, Peiffer, JJ, et al. (2015) Current hydration guidelines are erroneous: dehydration does not impair exercise performance in the heat. Br J Sports Med 49, 10771083.
5. Kasperek, GJ & Snider, RD (1987) Effect of exercise intensity and starvation on activation of branched-chain keto acid dehydrogenase by exercise. Am J Physiol 252, E33E37.
6. Shirreffs, SM, Watson, P & Maughan, RJ (2007) Milk as an effective post-exercise rehydration drink. Br J Nutr 98, 173180.
7. Watson, P, Love, TD, Maughan, RJ, et al. (2008) A comparison of the effects of milk and a carbohydrate-electrolyte drink on the restoration of fluid balance and exercise capacity in a hot, humid environment. Eur J Appl Physiol 104, 633642.
8. Shirreffs, SM, Taylor, AJ, Leiper, JB, et al. (1996) Post-exercise rehydration in man: effects of volume consumed and drink sodium content. Med Sci Sports Exerc 28, 12601271.
9. Shirreffs, SM & Maughan, RJ (1998) Volume repletion after exercise-induced volume depletion in humans: replacement of water and sodium losses. Am J Physiol 274, F868F875.
10. Sawka, MN, Burke, LM, Eichner, ER, et al. (2007) American college of sports medicine position stand. Exercise and fluid replacement. Med Sci Sports Exerc 39, 377390.
11. Nose, H, Mack, GW, Shi, X, et al. (1988) Role of osmolality and plasma volume during rehydration in humans. J Appl Physiol (1985) 65, 325331.
12. Maughan, RJ, Shirreffs, SM & Leiper, JB (1994) Post-exercise rehydration in man: effects of electrolyte addition to ingested fluids. Eur J Appl Physiol Occup Physiol 69, 209215.
13. Merson, SJ, Maughan, RJ & Shirreffs, SM (2008) Rehydration with drinks differing in sodium concentration and recovery from moderate exercise-induced hypohydration in man. Eur J Appl Physiol 103, 585594.
14. Nielsen, B, Sjogaard, G, Ugelvig, J, et al. (1986) Fluid balance in exercise dehydration and rehydration with different glucose-electrolyte drinks. Eur J Appl Physiol Occup Physiol 55, 318325.
15. Evans, GH, Shirreffs, SM & Maughan, RJ (2009) Postexercise rehydration in man: the effects of osmolality and carbohydrate content of ingested drinks. Nutrition 25, 905913.
16. Osterberg, KL, Pallardy, SE, Johnson, RJ, et al. (2010) Carbohydrate exerts a mild influence on fluid retention following exercise-induced dehydration. J Appl Physiol (1985) 108, 245250.
17. Clayton, DJ, Evans, GH & James, LJ (2014) Effect of drink carbohydrate content on postexercise gastric emptying, rehydration, and the calculation of net fluid balance. Int J Sport Nutr Exerc Metab 24, 7989.
18. Seifert, J, Harmon, J & DeClercq, P (2006) Protein added to a sports drink improves fluid retention. Int J Sport Nutr Exerc Metab 16, 420429.
19. James, LJ, Clayton, D & Evans, G H (2011) Effect of milk protein addition to a carbohydrate-electrolyte rehydration solution ingested after exercise in the heat. Br J Nutr 105, 393399.
20. James, LJ, Evans, GH, Madin, J, et al. (2013) Effect of varying the concentrations of carbohydrate and milk protein in rehydration solutions ingested after exercise in the heat. Br J Nutr 110, 12851291.
21. James, LJ, Mattin, L, Aldiss, P, et al. (2014) Effect of whey protein isolate on rehydration after exercise. Amino Acids 46, 12171224.
22. Jones, EJ, Bishop, PA, Green, JM, et al. (2010) Effects of metered versus bolus water consumption on urine production and rehydration. Int J Sport Nutr Exerc Metab 20, 3944.
23. Euromonitor (2014) Sports and energy drinks in Ireland. http://www.euromonitor.com/sports-and-energy-drinks-in-ireland/report (accessed September 2014).
24. Frayn, KN (1983) Calculation of substrate oxidation rates in vivo from gas exchange. J App Physiol Respir Environ Exerc Physiol 55, 628634.
25. Vist, GE & Maughan, RJ (1995) The effect of osmolality and carbohydrate content on the rate of gastric emptying of liquids in man. J Physiol 486, 523531.
26. Calbet, JA & MacLean, DA (1997) Role of caloric content on gastric emptying in humans. J Physiol 498, 553559.
27. Balanescu, S, Kopp, P, Gaskill, MB, et al. (2011) Correlation of plasma copeptin and vasopressin concentrations in hypo-, iso-, and hyperosmolar states. J Clin Endocrinol Metab 96, 10461052.
28. Cheuvront, SN, Kenefick, RW, Charkoudian, N, et al. (2013) Physiologic basis for understanding quantitative dehydration assessment. Am J Clin Nutr 97, 455462.
29. Zerbe, RL, Miller, JZ & Robertson, GL (1991) The reproducibility and heritability of individual differences in osmoregulatory function in normal human subjects. J Lab Clin Med 117, 5159.
30. Hobson, R & James, L (2015) The addition of whey protein to a carbohydrate–electrolyte drink does not influence post-exercise rehydration. J Sports Sci 33, 7784.
31. Himathongkam, T, Dluhy, RG & Williams, GH (1974) Potassium-aldosterone-renin interrelationships. J Clin Endocrinol Metab 41, 153159.
32. Thomas, DT, Erdman, KA & Burke, LM (2016) Position of the Academy of Nutrition and Dietetics, Dietitians of Canada, and the American College of Sports Medicine: Nutrition and Athletic Performance. J Acad Nutr Diet 116, 501528.
33. Ivy, JL, Goforth, HW Jr, Damon, BM, et al. (2002) Early postexercise muscle glycogen recovery is enhanced with a carbohydrate-protein supplement. J Appl Physiol (1985) 93, 13371344.
34. Tipton, KD, Rasmussen, BB, Miller, SL, et al. (2001) Timing of amino acid-carbohydrate ingestion alters anabolic response of muscle to resistance exercise. Am J Physiol Endocrinol Metab 281, E197E206.
35. Tipton, KD, Elliott, TA, Cree, MG, et al. (2007) Stimulation of net muscle protein synthesis by whey protein ingestion before and after exercise. Am J Physiol Endocrinol Metab 292, E71E76.
36. Maughan, RJ, Leiper, JB & Shirreffs, SM (1977) Factors influencing the restoration of fluid and electrolyte balance after exercise in the heat. Br J Sports Med 31, 175182.
37. Wong, SH, Williams, C, Simpson, M, et al. (1998) Influence of fluid intake pattern on short-term recovery from prolonged, submaximal running and subsequent exercise capacity. J Sports Sci 16, 143152.
38. National Centre for Biotechnology Information (2010) Lactose intolerance and health, Evidence Reports/Technology Assessments No. 192. Bethesda, MD. http://www.ncbi.nlm.nih.gov/books/NBK44616/ (accessed September 2014).

Keywords

Type Description Title
PDF
Supplementary materials

Seery and Jakeman supplementary material S1
Supplementary Figure

 PDF (143 KB)
143 KB
PDF
Supplementary materials

Seery and Jakeman supplementary material S2
Supplementary Figure

 PDF (190 KB)
190 KB

A metered intake of milk following exercise and thermal dehydration restores whole-body net fluid balance better than a carbohydrate–electrolyte solution or water in healthy young men

  • Suzanne Seery (a1) and Philip Jakeman (a1) (a2)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed