Hostname: page-component-8448b6f56d-c4f8m Total loading time: 0 Render date: 2024-04-24T02:30:15.247Z Has data issue: false hasContentIssue false

Morphological and functional aspects of oxytetracycline administration to conventional rats

Published online by Cambridge University Press:  09 March 2007

E. J. Ruitenberg
Affiliation:
National Institute for Public Health, Bilthoven, The Netherlands
E. H. Kampelmacher
Affiliation:
National Institute for Public Health, Bilthoven, The Netherlands
Lucretia M. Van Noorle Jansen
Affiliation:
National Institute for Public Health, Bilthoven, The Netherlands
Ph. Cohen
Affiliation:
National Institute for Public Health, Bilthoven, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Studies were performed with female rats to examine the effect of various levels of orally administered oxytetracycline on body-weight, weight of various portions of the intestinal tract, weight of mesenteric lymph nodes, distribution pattern of the tissue elements in the terminal portion of the ileum, and on the susceptibility to invasion by Salmonella typhi-murium.

2. There was no growth promotion resulting from any antibiotic treatment. A consistent finding was the decrease in the wet weight of mesenteric lymph nodes in the rats given antibiotic.

3. In the bacteriological test, no differences between antibiotic-fed and control groups were observed in isolations from the liver, spleen or intestinal tissue. It was concluded that there were no effects of oxytetracycline administration on invasive capacity of orally administered S. typhi-murium.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1973

References

Braude, R., Kon, S. K. & Porter, J. W. G. (1955). Nutr. Abstr. Rev. 23, 473.Google Scholar
Chalkley, H. W. (1943-4). J. natn. Cancer Inst. 4, 47.Google Scholar
Clegg, F. G. (1962). In Antibiotics in Agriculture p. 361. [Woodbine, M, editor]. London: Butterworth.Google Scholar
Coates, M. E. (1962). In Antibiotics in Agriculture p. 203. [Woodbine, M., editor] London: Butterworth.Google Scholar
Franti, C. E., Alder, H. E. & Julian, L. M. (1971). Poult. Sci. 50, 94.CrossRefGoogle Scholar
Gordon, H. A. (1960). Am J. dig. Dis. 5, 841.CrossRefGoogle Scholar
Gordon, H. A. & Bruckner-Kardoss, E. (1961). Acta anat. 44, 210.CrossRefGoogle Scholar
Groth, W. (1961). Arch. exp. VetMed. 15, 30.Google Scholar
Guinée, P. A. M., Kampelmacher, E. H., Hofstra, H. & van Keulen, A. (1964). Zentbl. VetMed. B II, 728.Google Scholar
Jukes, H. G., Hill, D. C. & Branion, H. D. (1956). Poult. Sci. 35, 716.CrossRefGoogle Scholar
Romeis, B. (1948). Mikroskopische Technik 15th ed. München: Leibnitz Verlag.CrossRefGoogle Scholar
Ruitenberg, E. J., Guinće, P. A. M., Kruyt, B. C. & Berkvens, J. M. (1971). Br. exp. Path. 52, 192.Google Scholar
Ruitenberg, E. J., kampelmacher, E. H. & van Noorle Jansen, L. M. (1972 a). Zentbl. Bakt. ParasitKde (Abt. 1. Orig. A.) 219, 336.Google Scholar
Ruitenburg, E. J., Kampelmacher, E. H. & van Noorle Jansen, L. M. (1972 b). Zentbl. VetMed. B 19, 666.Google Scholar
Sewell, I. A. & Nicol, T. (1958). Nature, Lond. 181, 1662.CrossRefGoogle Scholar
Strehler, B. L., Mark, D. D., Mildvan, A. S. & Gee, M. V. (1959). J. Geront. 14, 430.CrossRefGoogle Scholar
Tangl, H. (1964). Wien. tierärztl. Mschr. 51, 734.Google Scholar