Skip to main content Accesibility Help
×
×
Home

No effect of 12 weeks' supplementation with 1 g DHA-rich or EPA-rich fish oil on cognitive function or mood in healthy young adults aged 18–35 years

  • Philippa A. Jackson (a1), Michael E. Deary (a2), Jonathon L. Reay (a1), Andrew B. Scholey (a3) and David O. Kennedy (a1)...
Abstract

The n-3 PUFA are a unique class of fatty acids that cannot be manufactured by the body, and must be acquired via dietary sources. In the UK, as well as in other Western nations, these ‘essential’ fatty acids are consumed in quantities that fall below government guidelines. The present study explored the effects of 12 weeks' dietary supplementation with 1 g/d of two types of fish oil (FO; DHA-rich and EPA-rich) in 159 healthy young adults aged 18–35 years. An assessment of performance on a battery of computerised cognitive tasks and mood measures took place before and following the 12-week treatment regimen. Venous blood samples were also supplied by participants at both time points which were later analysed for serum fatty acid concentrations. Despite good adherence to the study protocol – as reflected in increased concentrations of n-3 serum fatty acids – compared with placebo, the observed effects of both active treatments were minimal. The only finding of note revealed that supplementation with EPA-rich FO may reduce subjective mental fatigue at times of high cognitive demand, although further investigation is required. These findings, taken together with other recent reports of null effects, suggest that dietary supplementation with n-3 PUFA in healthy, normally developing and impairment-free populations is unlikely to result in cognitive enhancement.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      No effect of 12 weeks' supplementation with 1 g DHA-rich or EPA-rich fish oil on cognitive function or mood in healthy young adults aged 18–35 years
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      No effect of 12 weeks' supplementation with 1 g DHA-rich or EPA-rich fish oil on cognitive function or mood in healthy young adults aged 18–35 years
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      No effect of 12 weeks' supplementation with 1 g DHA-rich or EPA-rich fish oil on cognitive function or mood in healthy young adults aged 18–35 years
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr P. A. Jackson, fax +44 191 227 4515, email philippa.jackson@northumbria.ac.uk
References
Hide All
1 Moriguchi, T & Salem, N Jr (2003) Recovery of brain docosahexaenoate leads to recovery of spatial task performance. J Neurochem 87, 297309.
2 Mori, TA & Woodman, RJ (2006) The independent effects of eicosapentaenoic acid and docosahexaenoic acid on cardiovascular risk factors in humans. Curr Opin Clin Nutr Metab Care 9, 95104.
3 De Caterina, R & Basta, G (2001) n-3 fatty acids and the inflammatory response – biological background. Eur Heart J Suppl. 3, D42D49.
4 Bourre, JM (2005) Omega-3 fatty acids in psychiatry. Med Sci (Paris) 21, 216221.
5 Innis, SM (2008) Dietary omega 3 fatty acids and the developing brain. Brain Res 1237, 3543.
6 Hibbeln, JR, Davis, JM, Steer, C, et al. (2007) Maternal seafood consumption in pregnancy and neurodevelopmental outcomes in childhood (ALSPAC study): an observational cohort study. Lancet 369, 578585.
7 Helland, IB, Smith, L, Saarem, K, et al. (2003) Maternal supplementation with very-long-chain n-3 fatty acids during pregnancy and lactation augments children's IQ at 4 years of age. Pediatrics 111, e39e44.
8 Aberg, MA, Aberg, N, Brisman, J, et al. (2009) Fish intake of Swedish male adolescents is a predictor of cognitive performance. Acta Paediatr 98, 555560.
9 Heude, B, Ducimetiere, P & Berr, C (2003) Cognitive decline and fatty acid composition of erythrocyte membranes – the EVA Study. Am J Clin Nutr 77, 803808.
10 Kalmijn, S, van Boxtel, MP, Ocke, M, et al. (2004) Dietary intake of fatty acids and fish in relation to cognitive performance at middle age. Neurology 62, 275280.
11 Morris, MC, Evans, DA, Tangney, CC, et al. (2005) Fish consumption and cognitive decline with age in a large community study. Arch Neurol 62, 18491853.
12 FSA (2010) National Diet Nutrition Survey: headline results from year 1 (2008/2009), http://www.food.gov.uk/science/dietarysurveys/ndnsdocuments/ndns0809year1.
13 Kennedy, DO, Jackson, PA, Elliott, JM, et al. (2009) Cognitive and mood effects of 8 weeks' supplementation with 400 mg or 1000 mg of the omega-3 essential fatty acid docosahexaenoic acid (DHA) in healthy children aged 10–12 years. Nutr Neurosci 12, 4856.
14 Kirby, A, Woodward, A, Jackson, S, et al. (2010) A double-blind, placebo-controlled study investigating the effects of omega-3 supplementation in children aged 8–10 years from a mainstream school population. Res Dev Disabil 31, 718730.
15 Osendarp, SJM, Baghurst, KI, Bryan, J, et al. (2007) Effect of a 12-mo micronutrient intervention on learning and memory in well-nourished and marginally nourished school-aged children: 2 parallel, randomized, placebo-controlled studies in Australia and Indonesia. Am J Clin Nutr 86, 10821093.
16 Dalton, A, Wolmarans, P, Witthuhn, RC, et al. (2009) A randomised control trial in schoolchildren showed improvement in cognitive function after consuming a bread spread, containing fish flour from a marine source. Prostaglandins Leukot Essent Fatty Acids 80, 143149.
17 Ryan, AS & Nelson, EB (2008) Assessing the effect of docosahexaenoic acid on cognitive functions in healthy, preschool children: a randomized, placebo-controlled, double-blind study. Clin Pediatr (Phila) 47, 355362.
18 Dangour, AD, Allen, E, Elbourne, D, et al. (2010) Effect of 2-y n-3 long-chain polyunsaturated fatty acid supplementation on cognitive function in older people: a randomized, double-blind, controlled trial. Am J Clin Nutr 91, 17251732.
19 Yurko-Mauro, K, McCarthy, D, Rom, D, et al. (2010) Beneficial effects of docosahexaenoic acid on cognition in age-related cognitive decline. Alzheimers Dement 6, 456464.
20 Hamazaki, T, Sawazaki, S, Itomura, M, et al. (1996) The effect of docosahexaenoic acid on aggression in young adults. A placebo-controlled double-blind study. J Clin Invest 97, 11291133.
21 Fontani, G, Corradeschi, A, Felici, F, et al. (2005) Cognitive and physiological effects of omega-3 polyunsaturated fatty acid supplementation in healthy subjects. Eur J Clin Invest 35, 691699.
22 Antypa, N, Van der Does, AJW, Smelt, AHM, et al. (2009) Omega-3 fatty acids (fish-oil) and depression-related cognition in healthy volunteers. J Psychopharmacol 23, 831840.
23 Connor, WE & Neuringer, M (1988) The effects of n-3 fatty acid deficiency and repletion upon the fatty acid composition and function of the brain and retina. Prog Clin Biol Res 282, 275294.
24 Fearnley, S (1997) MRC psycholinguistic database search program. Behav Res Methods 29, 291295.
25 Stroop, JR (1992) Studies of interference in serial verbal reactions. (Reprinted from J Exp Psychol 18, 643–662, 1935). J Exp Psychol Gen 121, 1523.
26 Lewand, RE (2000) Cryptographical Mathematics. Washington, DC: The Mathematical Association of America.
27 Reay, JL, Kennedy, DO & Scholey, AB (2005) Single doses of Panax ginseng (G115) reduce blood glucose levels and improve cognitive performance during sustained mental activity. J Psychopharmacol 19, 357365.
28 Bond, A & Lader, M (1974) Use of analog scales in rating subjective feelings. Br J Med Psychol 47, 211218.
29 Lovibond, SH & Lovibond, PF (1995) Manual for the Depression, Anxiety and Stress Scales, 2nd ed. Sydney: Psychology Foundation.
30 Masood, A, Stark, KD & Salem, N (2005) A simplified and efficient method for the analysis of fatty acid methyl esters suitable for large clinical studies. J Lipid Res 46, 22992305.
31 Keppel, G (1991) Design and Analysis. Upper Saddle River, NJ: Prentice Hall.
32 SACN/COT (2004) Advice on Fish Consumption: Benefits and Risks. London: TSO.
33 Rogers, PJ, Appleton, KM, Kessler, D, et al. (2008) No effect of n-3 long-chain polyunsaturated fatty acid (EPA and DHA) supplementation on depressed mood and cognitive function: a randomised controlled trial. Br J Nutr 99, 421431.
34 Morse, NL (2009) A meta-analysis of blood fatty acids in people with learning disorders with particular interest in arachidonic acid. Prostaglandins Leukot Essent Fatty Acids 81, 373389.
35 Jensen, MM, Skarsfeldt, T & Hoy, CE (1996) Correlation between level of (n-3) polyunsaturated fatty acids in brain phospholipids and learning ability in rats. A multiple generation study. Biochim Biophys Acta 1300, 203209.
36 Smuts, CM, Dalton, A, Wolmarans, PW, et al. (2010) The effect of omega-3 fatty acid intervention in children with higher compared to lower baseline cognitive scores: a secondary analysis. In 9th Conference of the International Society for the Study of Fatty Acids and Lipids (ISSFAL). Maastrict, The Netherlands: ISSFAL.
37 Jackson, PA, Reay, JL, Scholey, AB, et al. (2011) DHA-rich oil modulates the cerebral haemodynamic response to cognitive tasks in healthy young adults: a near IR spectroscopy pilot study. Br J Nutr (epublication ahead of print version).
38 McNamara, RK, Able, J, Jandacek, R, et al. (2010) Docosahexaenoic acid supplementation increases prefrontal cortex activation during sustained attention in healthy boys: a placebo-controlled, dose-ranging, functional magnetic resonance imaging study. Am J Clin Nutr 91, 10601067.
39 Ferrucci, L, Cherubini, A, Bandinelli, S, et al. (2006) Relationship of plasma polyunsaturated fatty acids to circulating inflammatory markers. J Clin Endocrinol Metab 91, 439446.
40 Whalley, B, Jacobs, PA & Hyland, ME (2007) Correlation of psychological and physical symptoms with chronically elevated cytokine levels associated with a common immune dysregulation. Ann Allergy Asthma Immunol 99, 348351.
41 Morris, MC, Sacks, F & Rosner, B (1993) Does fish-oil lower blood-pressure – a meta-analysis of controlled trials. Circulation 88, 523533.
42 de Wilde, MC, Farkas, E, Gerrits, M, et al. (2002) The effect of n-3 polyunsaturated fatty acid-rich diets on cognitive and cerebrovascular parameters in chronic cerebral hypoperfusion. Brain Res 947, 162173.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed