Skip to main content Accessibility help
×
Home

Nutrition and the circadian system

  • Gregory D. M. Potter (a1), Janet E. Cade (a2), Peter J. Grant (a3) and Laura J. Hardie (a1)

Abstract

The human circadian system anticipates and adapts to daily environmental changes to optimise behaviour according to time of day and temporally partitions incompatible physiological processes. At the helm of this system is a master clock in the suprachiasmatic nuclei (SCN) of the anterior hypothalamus. The SCN are primarily synchronised to the 24-h day by the light/dark cycle; however, feeding/fasting cycles are the primary time cues for clocks in peripheral tissues. Aligning feeding/fasting cycles with clock-regulated metabolic changes optimises metabolism, and studies of other animals suggest that feeding at inappropriate times disrupts circadian system organisation, and thereby contributes to adverse metabolic consequences and chronic disease development. ‘High-fat diets’ (HFD) produce particularly deleterious effects on circadian system organisation in rodents by blunting feeding/fasting cycles. Time-of-day-restricted feeding, where food availability is restricted to a period of several hours, offsets many adverse consequences of HFD in these animals; however, further evidence is required to assess whether the same is true in humans. Several nutritional compounds have robust effects on the circadian system. Caffeine, for example, can speed synchronisation to new time zones after jetlag. An appreciation of the circadian system has many implications for nutritional science and may ultimately help reduce the burden of chronic diseases.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Nutrition and the circadian system
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Nutrition and the circadian system
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Nutrition and the circadian system
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: G. D. M. Potter, email umgdmp@leeds.ac.uk

References

Hide All
1. Bass, J & Takahashi, JS (2010) Circadian integration of metabolism and energetics. Science 330, 13491354.
2. Xu, K, DiAngelo, JR, Hughes, ME, et al. (2011) The circadian clock interacts with metabolic physiology to influence reproductive fitness. Cell Metab 13, 639654.
3. Loh, DH, Jami, SA, Flores, RE, et al. (2015) Misaligned feeding impairs memories. Elife 4, e09460.
4. Arble, DM, Bass, J, Laposky, AD, et al. (2009) Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring) 17, 21002102.
5. Mukherji, A, Kobiita, A, Damara, M, et al. (2015) Shifting eating to the circadian rest phase misaligns the peripheral clocks with the master SCN clock and leads to a metabolic syndrome. Proc Natl Acad Sci U S A 112, E6691E6698.
6. Bray, MS, Ratcliffe, WF, Grenett, MH, et al. (2013) Quantitative analysis of light-phase restricted feeding reveals metabolic dyssynchrony in mice. Int J Obes (Lond) 37, 843852.
7. Damiola, F, Le Minh, N, Preitner, N, et al. (2000) Restricted feeding uncouples circadian oscillators in peripheral tissues from the central pacemaker in the suprachiasmatic nucleus. Genes Dev 14, 29502961.
8. Boulos, Z, Rosenwasser, AM & Terman, M (1980) Feeding schedules and the circadian organization of behavior in the rat. Behav Brain Res 1, 3965.
9. Chaix, A, Zarrinpar, A, Miu, P, et al. (2014) Time-restricted feeding is a preventative and therapeutic intervention against diverse nutritional challenges. Cell Metab 20, 9911005.
10. Moreno, CR, Vasconcelos, S, Marqueze, EC, et al. (2015) Sleep patterns in Amazon rubber tappers with and without electric light at home. Sci Rep 5, 14074.
11. Sack, RL, Auckley, D, Auger, RR, et al. (2007) Circadian rhythm sleep disorders: part I, basic principles, shift work and jet lag disorders. An American Academy of Sleep Medicine review. Sleep 30, 14601483.
12. Ralph, MR, Foster, RG, Davis, FC, et al. (1990) Transplanted suprachiasmatic nucleus determines circadian period. Science 247, 975978.
13. Silver, R, LeSauter, J, Tresco, PA, et al. (1996) A diffusible coupling signal from the transplanted suprachiasmatic nucleus controlling circadian locomotor rhythms. Nature 382, 810813.
14. Welsh, DK, Takahashi, JS & Kay, SA (2010) Suprachiasmatic nucleus: cell autonomy and network properties. Annu Rev Physiol 72, 551577.
15. Partch, CL, Green, CB & Takahashi, JS (2014) Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24, 9099.
16. Patel, VR, Ceglia, N, Zeller, M, et al. (2015) The pervasiveness and plasticity of circadian oscillations: the coupled circadian-oscillators framework. Bioinformatics 31, 31813188.
17. Reddy, AB, Karp, NA, Maywood, ES, et al. (2006) Circadian orchestration of the hepatic proteome. Curr Biol 16, 11071115.
18. Eckel-Mahan, KL, Patel, VR, Mohney, RP, et al. (2012) Coordination of the transcriptome and metabolome by the circadian clock. Proc Natl Acad Sci U S A 109, 55415546.
19. Cardone, L, Hirayama, J, Giordano, F, et al. (2005) Circadian clock control by SUMOylation of BMAL1. Science 309, 13901394.
20. Zhang, R, Lahens, NF, Ballance, HI, et al. (2014) A circadian gene expression atlas in mammals: implications for biology and medicine. Proc Natl Acad Sci U S A 111, 1621916224.
21. Asher, G, Reinke, H, Altmeyer, M, et al. (2010) Poly(ADP-ribose) polymerase 1 participates in the phase entrainment of circadian clocks to feeding. Cell 142, 943953.
22. Hirayama, J, Sahar, S, Grimaldi, B, et al. (2007) CLOCK-mediated acetylation of BMAL1 controls circadian function. Nature 450, 10861090.
23. O’Neill, JS, van Ooijen, G, Dixon, LE, et al. (2011) Circadian rhythms persist without transcription in a eukaryote. Nature 469, 554558.
24. Czeisler, CA, Duffy, JF, Shanahan, TL, et al. (1999) Stability, precision, and near-24-hour period of the human circadian pacemaker. Science 284, 21772181.
25. Berson, DM, Dunn, FA & Takao, M (2002) Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 10701073.
26. Moore, RY (1996) Neural control of the pineal gland. Behav Brain Res 73, 125130.
27. Zawilska, JB, Skene, DJ & Arendt, J (2009) Physiology and pharmacology of melatonin in relation to biological rhythms. Pharmacol Rep 61, 383410.
28. Kramer, A, Yang, FC, Snodgrass, P, et al. (2003) Regulation of daily locomotor activity and sleep by hypothalamic EGF receptor signalling. Science 294, 25112515.
29. Cheng, MY, Bullock, CM, Li, C, et al. (2002) Prokineticin 2 transmits the behavioural circadian rhythm of the suprachiasmatic nucleus. Nature 417, 405410.
30. Kraves, S & Weitz, CJ (2006) A role for cardiotrophin-like cytokine in the circadian control of mammalian locomotor activity. Nat Neurosci 9, 212219.
31. Kalsbeek, A, van Heerikhuize, JJ, Wortel, J, et al. (1996) A diurnal rhythm of stimulatory input to the hypothalamo-pituitary-adrenal system as revealed by timed intrahypothalamic administration of the vasopressin V1 antagonist. J Neurosci 16, 55555565.
32. Reddy, AB, Maywood, ES, Karp, NA, et al. (2007) Glucocorticoid signaling synchronizes the liver circadian transcriptome. Hepatology 45, 14781488.
33. Buhr, ED, Yoo, SH & Takahashi, JS (2010) Temperature as a universal resetting cue for mammalian circadian oscillators. Science 330, 379385.
34. Goo, RH, Moore, JG, Greenberg, E, et al. (1987) Circadian variation in gastric emptying of meals in humans. Gastroenterology 93, 515518.
35. Rao, SS, Sadeghi, P, Beaty, J, et al. (2001) Ambulatory 24-h colonic manometry in healthy humans. Am J Physiol Gastrointest Liver Physiol 280, G629G639.
36. Han, SS, Zhang, R, Jain, R, et al. (2015) Circadian control of bile acid synthesis by a KLF15-Fgf15 axis. Nat Commun 6, 7231.
37. Hussain, MM & Pan, X (2015) Circadian regulation of macronutrient absorption. J Biol Rhythms 30, 459469.
38. Thaiss, CA, Zeevi, D, Levy, M, et al. (2014) Transkingdom control of microbiota diurnal oscillations promotes metabolic homeostasis. Cell 159, 514529.
39. Liang, X, Bushman, FD & FitzGerald, GA (2015) Rhythmicity of the intestinal microbiota is regulated by gender and the host circadian clock. Proc Natl Acad Sci U S A 112, 1047910484.
40. Leone, V, Gibbons, SM, Martinez, K, et al. (2015) Effects of diurnal variation of gut microbes and high-fat feeding on host circadian clock function and metabolism. Cell Host Microbe 17, 681689.
41. Morgan, L, Arendt, J, Owens, D, et al. (1998) Effects of the endogenous clock and sleep time on melatonin, insulin, glucose and lipid metabolism. J Endocrinol 157, 443451.
42. Tanabe, K, Kitagawa, E, Wada, M, et al. (2015) Antigen exposure in the late light period induces severe symptoms of food allergy in an OVA-allergic mouse model. Sci Rep 5, 14424.
43. Scheer, FA, Hilton, MF, Mantzoros, CS, et al. (2009) Adverse metabolic and cardiovascular consequences of circadian misalignment. Proc Natl Acad Sci U S A 106, 44534458.
44. Scheer, FA, Morris, CJ & Shea, SA (2013) The internal circadian clock increases hunger and appetite in the evening independent of food intake and other behaviors. Obesity (Silver Spring) 21, 421423.
45. Morris, CJ, Garcia, JI, Myers, S, et al. (2015) The human circadian system has a dominating role in causing the morning/evening difference in diet-induced thermogenesis. Obesity (Silver Spring) 23, 20532058.
46. Stokkan, KA, Yamazaki, S, Tei, H, et al. (2001) Entrainment of the circadian clock in the liver by feeding. Science 291, 490493.
47. Zvonic, S, Ptitsyn, AA, Conrad, SA, et al. (2006) Characterization of peripheral circadian clocks in adipose tissues. Diabetes 55, 962970.
48. Hoogerwerf, WA, Hellmich, HL, Cornelissen, G, et al. (2007) Clock gene expression in the murine gastrointestinal tract: endogenous rhythmicity and effects of a feeding regimen. Gastroenterology 133, 12501260.
49. Saini, C, Liani, A, Curie, T, et al. (2013) Real-time recording of circadian liver gene expression in freely moving mice reveals the phase-setting behavior of hepatocyte clocks. Genes Dev 27, 15261536.
50. Mendoza, J, Graff, C, Dardente, H, et al. (2005) Feeding cues alter clock gene oscillations and photic responses in the suprachiasmatic nuclei of mice exposed to a light/dark cycle. J Neurosci 25, 15141522.
51. Krauchi, K, Cajochen, C, Werth, E, et al. (2002) Alteration of internal circadian phase relationships after morning versus evening carbohydrate-rich meals in humans. J Biol Rhythms 17, 364376.
52. Eckel-Mahan, K & Sassone-Corsi, P. (2013) Metabolism and the circadian clock converge. Physiol Rev 93, 107135.
53. Lamia, KA, Sachdeva, UM, DiTacchio, L, et al. (2009) AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science 326, 437440.
54. Asher, G, Gatfield, D, Stratmann, M, et al. (2008) SIRT1 regulates circadian clock gene expression through PER2 deacetylation. Cell 134, 317328.
55. Orozco-Solis, R, Ramadori, G, Coppari, R, et al. (2015) SIRT1 relays nutritional inputs to the circadian clock through the sf1 neurons of the ventromedial hypothalamus. Endocrinology 156, 21742184.
56. Masri, S, Rigor, P, Cervantes, M, et al. (2014) Partitioning circadian transcription by SIRT6 leads to segregated control of cellular metabolism. Cell 158, 659672.
57. Paschos, GK, Ibrahim, S, Song, WL, et al. (2012) Obesity in mice with adipocyte-specific deletion of clock component Arntl. Nat Med 18, 17681777.
58. Turek, FW, Joshu, C, Kohsaka, A, et al. (2005) Obesity and metabolic syndrome in circadian clock mutant mice. Science 308, 10431045.
59. Patel, SA, Chaudhari, A, Gupta, R, et al. (2015) Circadian clocks govern calorie restriction-mediated life span extension through BMAL1- and IGF-1-dependent mechanisms. FASEB J 30, 16341642.
60. Sookoian, S, Castano, G, Gemma, C, et al. (2007) Common genetic variations in clock transcription factor are associated with nonalcoholic fatty liver disease. World J Gastroenterol 13, 42424248.
61. Scott, EM, Carter, AM & Grant, PJ (2008) Association between polymorphisms in the clock gene, obesity and the metabolic syndrome in man. Int J Obes (Lond) 32, 658662.
62. Tsuzaki, K, Kotani, K, Sano, Y, et al. (2010) The association of the Clock 3111 T/C SNP with lipids and lipoproteins including small dense low-density lipoprotein: results from the Mima study. BMC Med Genet 11, 150.
63. Sookoian, S, Gemma, C, Gianotti, TF, et al. (2008) Genetic variants of clock transcription factor are associated with individual susceptibility to obesity. Am J Clin Nutr 87, 16061615.
64. Uemura, H, Katsuura-Kamano, S, Yamaguchi, M, et al. (2015) A variant of the CLOCK gene and related haplotypes are associated with the prevalence of type 2 diabetes in the Japanese population. J Diabetes (epublication ahead of print version 16 September 2015).
65. Valladares, M, Obregon, AM & Chaput, JP (2015) Association between genetic variants of the clock gene and obesity and sleep duration. J Physiol Biochem 71, 855860.
66. Stephan, FK, Swann, JM & Sisk, CL (1979) Anticipation of 24-hr feeding schedules in rats with lesions of the suprachiasmatic nucleus. Behav Neural Biol 25, 346363.
67. Storch, KF & Weitz, CJ (2009) Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proc Natl Acad Sci U S A 106, 68086813.
68. Mendoza, J, Pevet, P, Felder-Schmittbuhl, MP, et al. (2010) The cerebellum harbors a circadian oscillator involved in food anticipation. J Neurosci 30, 18941904.
69. Landry, GJ, Kent, BA, Patton, DF, et al. (2011) Evidence for time-of-day dependent effect of neurotoxic dorsomedial hypothalamic lesions on food anticipatory circadian rhythms in rats. PLoS ONE 6, e24187.
70. Verwey, M & Amir, S (2009) Food-entrainable circadian oscillators in the brain. Eur J Neurosci 30, 16501657.
71. Gallardo, CM, Darvas, M, Oviatt, M, et al. (2014) Dopamine receptor 1 neurons in the dorsal striatum regulate food anticipatory circadian activity rhythms in mice. Elife 3, e03781.
72. Sutton, GM, Perez-Tilve, D, Nogueiras, R, et al. (2008) The melanocortin-3 receptor is required for entrainment to meal intake. J Neurosci 28, 1294612955.
73. LeSauter, J, Hoque, N, Weintraub, M, et al. (2009) Stomach ghrelin-secreting cells as food-entrainable circadian clocks. Proc Natl Acad Sci U S A 106, 1358213587.
74. Kohsaka, A, Laposky, AD, Ramsey, KM, et al. (2007) High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metab 6, 414421.
75. Hatori, M, Vollmers, C, Zarrinpar, A, et al. (2012) Time-restricted feeding without reducing caloric intake prevents metabolic diseases in mice fed a high-fat diet. Cell Metab 15, 848860.
76. Pivovarova, O, Gogebakan, O, Sucher, S, et al. (2016) Regulation of the clock genes expression in human adipose tissue by the weight loss. Int J Obes (Lond) (epublication ahead of print version 23 February 2016).
77. Matkovic, V, Ilich, JZ, Badenhop, NE, et al. (1997) Gain in body fat is inversely related to the nocturnal rise in serum leptin level in young females. J Clin Endocrinol Metab 82, 13681372.
78. Eckel-Mahan, KL, Patel, VR, de Mateo, S, et al. (2013) Reprogramming of the circadian clock by nutritional challenge. Cell 155, 14641478.
79. Zarrinpar, A, Chaix, A, Yooseph, S, et al. (2014) Diet and feeding pattern affect the diurnal dynamics of the gut microbiome. Cell Metab 20, 10061017.
80. Gill, S & Panda, S. (2015) A smartphone app reveals erratic diurnal eating patterns in humans that can be modulated for health benefits. Cell Metab 22, 789798.
81. Carlson, O, Martin, B, Stote, KS, et al. (2007) Impact of reduced meal frequency without caloric restriction on glucose regulation in healthy, normal-weight middle-aged men and women. Metabolism 56, 17291734.
82. Stote, KS, Baer, DJ, Spears, K, et al. (2007) A controlled trial of reduced meal frequency without caloric restriction in healthy, normal-weight, middle-aged adults. Am J Clin Nutr 85, 981988.
83. Dhurandhar, EJ, Dawson, J, Alcorn, A, et al. (2014) The effectiveness of breakfast recommendations on weight loss: a randomized controlled trial. Am J Clin Nutr 100, 507513.
84. Betts, JA, Richardson, JD, Chowdhury, EA, et al. (2014) The causal role of breakfast in energy balance and health: a randomized controlled trial in lean adults. Am J Clin Nutr 100, 539547.
85. Chowdhury, EA, Richardson, JD, Holman, GD, et al. (2016) The causal role of breakfast in energy balance and health: a randomized controlled trial in obese adults. Am J Clin Nutr 103, 747756.
86. Toh, KL, Jones, CR, He, Y, et al. (2001) An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science 291, 10401043.
87. Liu, Z, Huang, M, Wu, X, et al. (2014) PER1 phosphorylation specifies feeding rhythm in mice. Cell Rep 7, 15091520.
88. Bogdan, A, Bouchareb, B & Touitou, Y (2001) Ramadan fasting alters endocrine and neuroendocrine circadian patterns. Meal-time as a synchronizer in humans? Life Sci 68, 16071615.
89. Sadeghirad, B, Motaghipisheh, S, Kolahdooz, F, et al. (2014) Islamic fasting and weight loss: a systematic review and meta-analysis. Public Health Nutr 17, 396406.
90. Bray, MS, Tsai, JY, Villegas-Montoya, C, et al. (2010) Time-of-day-dependent dietary fat consumption influences multiple cardiometabolic syndrome parameters in mice. Int J Obes (Lond) 34, 15891598.
91. Morris, M, Araujo, IC, Pohlman, RL, et al. (2012) Timing of fructose intake: an important regulator of adiposity. Clin Exp Pharmacol Physiol 39, 5762.
92. Jakubowicz, D, Barnea, M, Wainstein, J, et al. (2013) High caloric intake at breakfast vs. dinner differentially influences weight loss of overweight and obese women. Obesity (Silver Spring) 21, 25042512.
93. Garaulet, M, Gomez-Abellan, P, Alburquerque-Bejar, JJ, et al. (2013) Timing of food intake predicts weight loss effectiveness. Int J Obes (Lond) 37, 604611.
94. Ruiz-Lozano, T, Vidal, J, de Hollanda, A, et al. (2016) Timing of food intake is associated with weight loss evolution in severe obese patients after bariatric surgery. Clin Nutr (epublication ahead of print version 16 February 2016).
95. Oike, H, Sakurai, M, Ippoushi, K, et al. (2015) Time-fixed feeding prevents obesity induced by chronic advances of light/dark cycles in mouse models of jet-lag/shift work. Biochem Biophys Res Commun 465, 556561.
96. Halberg, N, Henriksen, M, Soderhamn, N, et al. (2005) Effect of intermittent fasting and refeeding on insulin action in healthy men. J Appl Physiol (1985) 99, 21282136.
97. Yanagihara, H, Ando, H, Hayashi, Y, et al. (2006) High-fat feeding exerts minimal effects on rhythmic mRNA expression of clock genes in mouse peripheral tissues. Chronobiol Int 23, 905914.
98. Oishi, K, Uchida, D & Itoh, N (2012) Low-carbohydrate, high-protein diet affects rhythmic expression of gluconeogenic regulatory and circadian clock genes in mouse peripheral tissues. Chronobiol Int 29, 799809.
99. Pivovarova, O, Jurchott, K, Rudovich, N, et al. (2015) Changes of dietary fat and carbohydrate content alter central and peripheral clock in humans. J Clin Endocrinol Metab 100, 22912302.
100. Greco, JA, Oosterman, JE & Belsham, DD. (2014) Differential effects of omega-3 fatty acid docosahexaenoic acid and palmitate on the circadian transcriptional profile of clock genes in immortalized hypothalamic neurons. Am J Physiol Regul Integr Comp Physiol 307, R1049R1060.
101. Furutani, A, Ikeda, Y, Itokawa, M, et al. (2015) Fish oil accelerates diet-induced entrainment of the mouse peripheral clock via GPR120. PLOS ONE 10, e0132472.
102. Huang, MC, Ho, CW, Chen, CH, et al. (2010) Reduced expression of circadian clock genes in male alcoholic patients. Alcohol Clin Exp Res 34, 18991904.
103. Ando, H, Ushijima, K, Kumazaki, M, et al. (2010) Associations of metabolic parameters and ethanol consumption with messenger RNA expression of clock genes in healthy men. Chronobiol Int 27, 194203.
104. Filiano, AN, Millender-Swain, T, Johnson, R Jr., et al. (2013) Chronic ethanol consumption disrupts the core molecular clock and diurnal rhythms of metabolic genes in the liver without affecting the suprachiasmatic nucleus. PLOS ONE 8, e71684.
105. Conroy, DA, Hairston, IS, Arnedt, JT, et al. (2012) Dim light melatonin onset in alcohol-dependent men and women compared with healthy controls. Chronobiol Int 29, 3542.
106. Brager, AJ, Ruby, CL, Prosser, RA, et al. (2010) Chronic ethanol disrupts circadian photic entrainment and daily locomotor activity in the mouse. Alcohol Clin Exp Res 34, 12661273.
107. Sherman, H, Gutman, R, Chapnik, N, et al. (2011) Caffeine alters circadian rhythms and expression of disease and metabolic markers. Int J Biochem Cell Biol 43, 829838.
108. Burke, TM, Markwald, RR, McHill, AW, et al. (2015) Effects of caffeine on the human circadian clock in vivo and in vitro . Sci Transl Med 7, 305ra146.
109. Pierard, C, Beaumont, M, Enslen, M, et al. (2001) Resynchronization of hormonal rhythms after an eastbound flight in humans: effects of slow-release caffeine and melatonin. Eur J Appl Physiol 85, 144150.
110. Beaumont, M, Batejat, D, Pierard, C, et al. (2004) Caffeine or melatonin effects on sleep and sleepiness after rapid eastward transmeridian travel. J Appl Physiol (1985) 96, 5058.
111. St Hilaire, MA & Lockley, SW (2015) Caffeine does not entrain the circadian clock but improves daytime alertness in blind patients with non-24-hour rhythms. Sleep Med 16, 800804.
112. Ribas-Latre, A, Baselga-Escudero, L, Casanova, E, et al. (2015) Dietary proanthocyanidins modulate BMAL1 acetylation, Nampt expression and NAD levels in rat liver. Sci Rep 5, 10954.
113. Pifferi, F, Dal-Pan, A, Menaker, M, et al. (2011) Resveratrol dietary supplementation shortens the free-running circadian period and decreases body temperature in a prosimian primate. J Biol Rhythms 26, 271275.
114. Zwighaft, Z, Aviram, R, Shalev, M, et al. (2015) Circadian clock control by polyamine levels through a mechanism that declines with age. Cell Metab 22, 874885.
115. Horne, JA & Ostberg, O (1976) A self-assessment questionnaire to determine morningness-eveningness in human circadian rhythms. Int J Chronobiol 4, 97110.
116. Roenneberg, T, Wirz-Justice, A & Merrow, M (2003) Life between clocks: daily temporal patterns of human chronotypes. J Biol Rhythms 18, 8090.
117. Garcia-Rios, A, Gomez-Delgado, FJ, Garaulet, M, et al. (2014) Beneficial effect of CLOCK gene polymorphism rs1801260 in combination with low-fat diet on insulin metabolism in the patients with metabolic syndrome. Chronobiol Int 31, 401408.
118. Illnerova, H, Buresova, M & Presl, J (1993) Melatonin rhythm in human milk. J Clin Endocrinol Metab 77, 838841.

Keywords

Nutrition and the circadian system

  • Gregory D. M. Potter (a1), Janet E. Cade (a2), Peter J. Grant (a3) and Laura J. Hardie (a1)

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed