Skip to main content Accessibility help
×
×
Home

Oat β-glucan: physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties

  • Qi Wang (a1) and Peter R. Ellis (a2)
Abstract

The water-soluble, mixed-linkage β-glucan, a form of soluble dietary fibre, is considered the main biologically active component responsible for the capacity of many oat products to lower postprandial glycaemia and fasting plasma cholesterol in human subjects. The present review discusses the physical and chemical properties of oat β-glucan that are considered important predictors of these beneficial metabolic effects. In vitro modelling and animal and human studies have provided compelling evidence showing that the ability of oat β-glucan to increase the viscosity of digesta in the gastrointestinal tract (GIT) is a primary determinant of its blood-glucose and cholesterol-lowering properties. Therefore, the chemical structure, molecular weight (MW), the rate and extent of dissolution and solution rheology of oat β-glucan are key factors in determining the physiological function of oat-containing foods. The structure and properties of oat β-glucan vary between species and varieties of oats, and are also affected by the growing and storage conditions and processing of oat grain. In addition, the extraction and analysis methods may also contribute to the variations in the structure, MW, hydration and solution rheology of β-glucan obtained from different laboratories. Recent work has demonstrated that β-glucan solubility in foods depends on the source of the material and processing conditions; solubility may also be subject to changes during food preparation and storage (such as freezing). In conclusion, both the amount and MW of β-glucan that are solubilised in the GIT need to be considered when assessing the blood-glucose and cholesterol-lowering properties of oat-containing foods.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Oat β-glucan: physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Oat β-glucan: physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Oat β-glucan: physico-chemical characteristics in relation to its blood-glucose and cholesterol-lowering properties
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: Q. Wang, fax +1 226 217 8181, email qi.wang@agr.gc.ca
References
Hide All
1 Parrish, FW, Perlin, AS & Reese, ET (1960) Selective enzymolysis of poly-β-d-glucans, and the structure of the polymers. Can J Chem 38, 20942104.
2 Doublier, JL & Wood, PJ (1995) Rheological properties of aqueous solutions of (1,3)(1,4)-β-d-glucan from oats (Avena sativa L.). Cereal Chem 72, 335340.
3 Judd, PA & Ellis, PR (2006) Plant polysaccharides in the prevention and treatment of diabetes mellitus. In Traditional Medicines for Modern Times, Antidiabetic Plants, pp. 257272 [Soumyanath, A, editor]. Boca Raton, FL: CRC Press (Taylor & Francis Group).
4 Andersson, M, Ellegård, L & Andersson, H (2002) Oat bran stimulates bile acid synthesis within 8 h as measured by 7α-hydroxy-4-cholesten-3-one. Am J Clin Nutr 76, 11111116.
5 Kim, HJ & White, PJ (2012) Interactional effects of β-glucan, starch, and protein in heated oat slurries on viscosity and in vitro bile acid binding. J Agr Food Chem 60, 62176222.
6 Lia, Å, Hallmans, G, Sandberg, AS, et al. (1995) Oat β-glucan increases bile acid excretion and a fiber-rich barley fraction increases cholesterol excretion in ileostomy subjects. Am J Clin Nutr 62, 12451251.
7 Kim, HJ & White, PJ (2013) Impact of the molecular weight, viscosity, and solubility of β-glucan on in vitro oat starch digestibility. J Agr Food Chem 61, 32703277.
8 Cui, W, Wood, PJ, Blackwell, B, et al. (2000) Physicochemical properties and structural characterization by two-dimensional NMR spectroscopy of wheat β-d-glucan-comparison with other cereal β-d-glucans. Carbohydr Polym 41, 249258.
9 Cui, SW & Wood, PJ (2000) Relationships between structural features, molecular weight and rheological properties of cereal β-d-glucans. In Hydrocolloids: Physical Chemistry and Industrial Application of Gels, Polysaccharides and Proteins, pp. 159168 [Nishinari, K, editor]. London: Elsevier.
10 Miller, SS, Wood, PJ, Pietrzak, LN, et al. (1993) Mixed linkage β-glucan, protein content, and kernel weight in Avena species. Cereal Chem 70, 231233.
11 Autio, K, Myllymäki, O, Suortti, T, et al. (1992) Physical properties of (1 → 3)(1 → 4)-β-d-glucan preparates isolated from Finnish oat varieties. Food Hydrocolloid 5, 513522.
12 Vårum, KM & Smidsrød, O (1988) Partial chemical and physical characterisation of (1 → 3)(1 → 4)-β-d-glucans from oat (Avena sativa L.) aleurone. Carbohydr Polym 9, 103117.
13 Ghotra, BS, Vasanthan, T, Wettasinghe, M, et al. (2007) 31P-nuclear magnetic resonance spectroscopic analysis of phosphorus in oat and barley β-glucans. Food Hydrocolloid 21, 10561061.
14 Lazaridou, A & Biliaderis, CG (2004) Cryogelation of cereal β-glucans: structure and molecular size effects. Food Hydrocolloid 18, 933947.
15 Lazaridou, A, Biliaderis, CG & Izydorczyk, MS (2003) Molecular size effects on rheological properties of oat β-glucans in solution and gels. Food Hydrocolloid 17, 693712.
16 Vårum, KM, Martinsen, A & Smidsrød, O (1991) Fractionation and viscometric characterization of a (1 → 3)(1 → 4)-β-d-glucan from oat, and universal calibration of a high-performance size-exclusion chromatographic system by the use of fractionated β-glucans, alginates and pullulans. Food Hydrocolloid 5, 363374.
17 Wang, Q, Wood, PJ & Cui, W (2002) Microwave assisted dissolution of β-glucan in water – implications for the characterisation of this polymer. Carbohydr Polym 47, 3538.
18 Roubroeks, JP, Mastromauro, DI, Andersson, R, et al. (2000) Molecular weight, structure, and shape of oat (1 → 3)(1 → 4)-β-d-glucan fractions obtained by enzymatic degradation with lichenase. Biomacromolecules 1, 584591.
19 Vårum, KM, Smidsrod, O & Brant, DA (1992) Light scattering reveals micelle-like aggregation in the (1-3)(1-4)-β-d-glucans from oat aleurone. Food Hydrocolloid 5, 497511.
20 Li, W, Wang, Q, Cui, SW, et al. (2006) Elimination of aggregates of (1 → 3) (1 → 4)-β-d-glucan in dilute solutions for light scattering and size exclusion chromatography study. Food Hydrocolloid 20, 361368.
21 Wang, Q, Wood, PJ, Cui, W, et al. (2001) The effect of autoclaving on the dispersibility and stability of three neutral polysaccharides in dilute aqueous solutions. Carbohydr Polym 45, 355362.
22 Wood, PJ (1991) Oat β-glucan-physicochemical properties and physiological effects. Trends Food Sci Technol 2, 311314.
23 Rimsten, L, Stenberg, T, Andersson, R, et al. (2003) Determination of β-glucan molecular weight using SEC with calcofluor detection in cereal extracts. Cereal Chem 80, 485490.
24 Andersson, AAM & Börjesdotter, D (2011) Effects of environment and variety on content and molecular weight of β-glucan in oats. J Cereal Sci 54, 122128.
25 Ajithkumar, A, Andersson, R & Åman, P (2005) Content and molecular weight of extractable β-glucan in American and Swedish oat samples. J Agr Food Chem 53, 12051209.
26 Wood, PJ, Siddiqui, IR & Paton, D (1978) Extraction of high viscosity gums from oats. Cereal Chem 55, 10381049.
27 Wood, PJ (1986) Oat β-glucan: structure, location, and properties. In Oats: Chemistry and Technology, 1st ed., pp. 121152 [Webster, FH, editor]. St Paul, MN: American Association of Cereal Chemists.
28 Doehlert, DC, Zhang, D & Moore, WR (1997) Influence of heat pretreatments of oat grain on the viscosity of flour slurries. J Sci Food Agr 74, 125131.
29 Andersson, AAM, Armö, E, Grangeon, E, et al. (2004) Molecular weight and structure units of (1 → 3)(1 → 4)-β-glucans in dough and bread made from hull-less barley milling fractions. J Cereal Sci 40, 195204.
30 Beer, MU, Wood, PJ, Weisz, J, et al. (1997) Effect of cooking and storage on the amount and molecular weight of (1 → 3)(1 → 4)-β-d-glucan extracted from oat products by an in vitro digestion system. Cereal Chem 74, 705709.
31 Kerckhoffs, DAJM, Hornstra, G & Mensink, RP (2003) Cholesterol-lowering effect of β-glucan from oat bran in mildly hypercholesterolemic subjects may decrease when β-glucan is incorporated into bread and cookies. Am J Clin Nutr 78, 221227.
32 Tosh, SM, Brummer, Y, Miller, SS, et al. (2010) Processing affects the physicochemical properties of β-glucan in oat bran cereal. J Agr Food Chem 58, 77237730.
33 Åman, P, Rimsten, L & Andersson, R (2004) Molecular weight distribution of β-glucan in oat-based foods. Cereal Chem 81, 356360.
34 Decker, EA, Rose, D & Stewart, D (2014) Processing of oats and the impact of processing operations on nutrition and health benefits. Br J Nutr 112, S58S64.
35 Peterson, DM, Wesenberg, DM & Burrup, DE (1995) β-Glucan content and its relationship to agronomic characteristics in elite oat germplasm. Crop Sci 35, 965970.
36 Saastamoinen, M, Hietaniemi, V, Pihlava, JM, et al. (2004) β-Glucan contents of groats of different oat cultivars in official variety, in organic cultivation, and in nitrogen fertilization trials in Finland. Agr Food Sci 13, 6879.
37 Dvončová, D, Havrlentová, M, Hlinková, A, et al. (2010) Effect of fertilization and variety on the β-glucan content in the grain of oats. Food Sci Tech Quality 17, 108116.
38 Miller, SS & Fulcher, RG (2011) Microstructure and chemistry of the oat kernel. In Oats: Chemistry and Technology, 2nd ed., pp. 7794 [Webster, FH and Wood, PJ, editors]. St Paul, MN: AACC.
39 Wood, PJ & Fulcher, RG (1978) Interaction of some dyes with cereal β-glucans. Cereal Chem 55, 952966.
40 Johansson, L, Tuomainen, P, Anttila, H, et al. (2007) Effect of processing on the extractability of oat β-glucan. Food Chem 105, 14391445.
41 Wood, PJ (2011) Oat β-glucan: properties and function. In Oats: Chemistry and Technology, 2nd ed., pp. 219254. St Paul, MN: AACC.
42 Stevenson, DG (2011) Oat dietary fiber: commercial processes and functional attributes. In Oats: Chemistry and Technology, 2nd ed., pp. 321332 [Webster, FH and Wood, PJ, editors]. St Paul, MN: AACC.
43 Lebet, V, Arrigoni, E & Amado, R (1998) Digestion procedure using mammalian enzymes to obtain substrates for in vitro fermentation studies. Lebensm-Wiss Technol 31, 509515.
44 Jørgensen, KG & Aastrup, S (1988) Quantification of high molecular weight (1 → 3)(1 → 4)-β-d-glucan using Calcofluor complex formation and flow injection analysis. II. Determination of total β-glucan content of barley and malt. Carlsberg Res Commun 53, 287296.
45 McCleary, BV & Glennie-Holmes, M (1985) Enzymatic quantification of (1 → 3)(1 → 4)-β-d-glucan in barley and malt. J Inst Brewing 91, 285295.
46 Gamel, TH, Abdel-Aal, ESM, Wood, PJ, et al. (2012) Application of the rapid Visco Analyzer (RVA) as an effective rheological tool for measurement of β-glucan viscosity. Cereal Chem 89, 5258.
47 Asp, NG, Johansson, CG, Hallmer, H, et al. (1983) Rapid enzymatic assay of insoluble and soluble dietary fiber. J Agr Food Chem 31, 476482.
48 Mälkki, Y, Autio, K, Hanninen, O, et al. (1992) Oat bran concentrates: physical properties of β-glucan and hypocholesterolemic effects in rats. Cereal Chem 69, 647653.
49 Zhang, M, Bai, X & Zhang, Z (2011) Extrusion process improves the functionality of soluble dietary fiber in oat bran. J Cereal Sci 54, 98103.
50 Degutyte-Fomins, L, Sontag-Strohm, T & Salovaara, H (2002) Oat bran fermentation by rye sourdough. Cereal Chem 79, 345348.
51 Zhang, D, Doehlert, DC & Moore, WR (1998) Rheological properties of (1 → 3),(1 → 4)-β-d-glucans from raw, roasted, and steamed oat groats. Cereal Chem 75, 433438.
52 Tosh, SM, Brummer, Y, Wolever, TMS, et al. (2008) Glycemic response to oat bran muffins treated to vary molecular weight of β-glucan. Cereal Chem 85, 211217.
53 Wang, Q, Ellis, PR & Ross-Murphy, SB (2003) Dissolution kinetics of guar gum powders – II. Effects of concentration and molecular weight. Carbohydr Polym 53, 7583.
54 Wong, BT, Day, L & Augustin, MA (2011) Deamidated wheat protein–dextran Maillard conjugates: effect of size and location of polysaccharide conjugated on steric stabilization of emulsions at acidic pH. Food Hydrocolloid 25, 14241432.
55 Tosh, SM, Wood, PJ, Wang, Q, et al. (2004) Structural characteristics and rheological properties of partially hydrolyzed oat β-glucan: the effects of molecular weight and hydrolysis method. Carbohydr Polym 55, 425436.
56 Lan-Pidhainy, X, Brummer, Y, Tosh, SM, et al. (2007) Reducing β-glucan solubility in oat bran muffins by freeze–thaw treatment attenuates its hypoglycemic effect. Cereal Chem 84, 512517.
57 Wang, Q, Ellis, PR & Ross-Murphy, SB (2008) Dissolution kinetics of water-soluble polymers: the guar gum paradigm. Carbohydr Polym 74, 519526.
58 Wang, Q, Ellis, PR & Ross-Murphy, SB (2006) Dissolution kinetics of guar gum powders – III. Effect of particle size. Carbohydr Polym 64, 239246.
59 Panahi, S, Ezatagha, A, Temelli, F, et al. (2007) β-Glucan from two sources of oat concentrates affect postprandial glycemia in relation to the level of viscosity. J Am Coll Nutr 26, 639644.
60 Ren, Y, Ellis, PR, Ross-Murphy, SB, et al. (2003) Dilute and semi-dilute solution properties of (1 → 3)(1 → 4)-β-d-glucan, the endosperm cell wall polysaccharide of oats (Avena sativa L.). Carbohydr Polym 53, 401408.
61 Rayment, P, Ross-Murphy, SB & Ellis, PR (2000) Effect of size and shape of particulate inclusions on the rheology of guar galactomannan solutions. Carbohydr Polym 43, 19.
62 Rayment, P, Ross-Murphy, SB & Ellis, PR (1995) Rheological properties of guar galactomannan and rice starch mixtures – I. Steady shear measurements. Carbohydr Polym 28, 121130.
63 Wood, PJ, Braaten, JT, Scott, FW, et al. (1994) Effect of dose and modification of viscous properties of oat gum on plasma glucose and insulin following an oral glucose load. Br J Nutr 72, 731743.
64 Marciani, L, Manoj, P, Hills, BP, et al. (1998) Echo-planar imaging relaxometry to measure the viscosity of a model meal. J Magn Reson 135, 8286.
65 Marciani, L, Gowland, PA, Spiller, RC, et al. (2000) Gastric response to increased meal viscosity assessed by echo-planar magnetic resonance imaging in humans. J Nutr 130, 122127.
66 Tosh, SM, Wood, PJ & Wang, Q (2003) Gelation characteristics of acid-hydrolyzed oat beta-glucan solutions solubilized at a range of temperatures. Food Hydrocolloid 17, 523527.
67 Thies, F, Masson, LF, Boffetta, P, et al. (2014) Oats and CVD risk markers: a systematic literature review. Br J Nutr 112, S19S30.
68 Jenkins, DJA, Wolever, TMS, Leeds, AR, et al. (1978) Dietary fibres, fibre analogues, and glucose tolerance: importance of viscosity. Br Med J 1, 13921394.
69 Brummer, Y, Duss, R, Wolever, TMS, et al. (2012) Glycemic response to extruded oat bran cereals processed to vary in molecular weight. Cereal Chem 89, 255261.
70 Tappy, L, Gügolz, E & Würsch, P (1996) Effects of breakfast cereals containing various amounts of β-glucan fibers on plasma glucose and insulin responses in NIDDM subjects. Diabetes Care 19, 831834.
71 Östman, E, Rossi, E, Larsson, H, et al. (2006) Glucose and insulin responses in healthy men to barley bread with different levels of (1 → 3)(1 → 4)-β-glucans; predictions using fluidity measurements of in vitro enzyme digests. J Cereal Sci 43, 230235.
72 Regand, A, Tosh, SM, Wolever, TMS, et al. (2009) Physicochemical properties of glucan in differently processed oat foods influence glycemic response. J Agr Food Chem 57, 88318838.
73 Regand, A, Chowdhury, Z, Tosh, SM, et al. (2011) The molecular weight, solubility and viscosity of oat beta-glucan affect human glycemic response by modifying starch digestibility. Food Chem 129, 297304.
74 Wolever, TMS, Tosh, SM, Gibbs, AL, et al. (2010) Physicochemical properties of oat β-glucan influence its ability to reduce serum LDL cholesterol in humans: a randomized clinical trial. Am J Clin Nutr 92, 723732.
75 Slaughter, SL, Ellis, PR, Jackson, EC, et al. (2002) The effect of guar galactomannan and water availability during hydrothermal processing on the hydrolysis of starch catalysed by pancreatic α-amylase. Biochim Biophys Acta 1571, 5563.
76 Brennan, CS, Blake, DE, Ellis, PR, et al. (1996) Effects of guar galactomannan on wheat bread microstructure and on the in vitro and in vivo digestibility of starch in bread. J Cereal Sci 24, 151160.
77 Keogh, GF, Cooper, GJS, Mulvey, TB, et al. (2003) Randomized controlled crossover study of the effect of a highly β-glucan-enriched barley on cardiovascular disease risk factors in mildly hypercholesterolemic men. Am J Clin Nutr 78, 711718.
78 Poppitt, SD (2007) Soluble fibre oat and barley β-glucan enriched products: can we predict cholesterol-lowering effects? Br J Nutr 97, 10491050.
79 Tosh, SM (2013) Review of human studies investigating the post-prandial blood-glucose lowering ability of oat and barley food products. Eur J Clin Nutr 67, 310317.
80 Kwong, MGY, Wolever, TMS, Brummer, Y, et al. (2013) Attenuation of glycemic responses by oat β-glucan solutions and viscoelastic gels is dependent on molecular weight distribution. Food Funct 4, 401408.
81 Wolever, TMS, Gibbs, AL, Brand-Miller, J, et al. (2011) Bioactive oat-glucan reduces LDL cholesterol in Caucasians and non-Caucasians. Nutr J 10, 130.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Wang Supplementary Material
Wang Supplementary Material

 Word (72 KB)
72 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed