Skip to main content Accessibility help
×
×
Home

Plant microbiota: implications for human health

  • Leena von Hertzen (a1) (a2)
  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Plant microbiota: implications for human health
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Plant microbiota: implications for human health
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Plant microbiota: implications for human health
      Available formats
      ×
Abstract
Copyright
References
Hide All
1. Minihane, AM, Vinoy, S, Russell, WR, et al. (2015) Low-grade inflammation, diet composition and health: current research evidence and its translation. Br J Nutr 114, 9991012.
2. Haahtela, T, Holgate, S, Pawankar, R, et al. (2013) The biodiversity hypothesis and allergic disease: a statement paper of the World Allergy Organization. World Allergy Organ J 6, 3.
3. Hanski, IA, von Hertzen, L, Fyhrquist, N, et al. (2012) Environmental biodiversity, human microbiota and allergy are interrelated. Proc Natl Acad Sci U S A 109, 83348339.
4. West, CE, Renz, H, Jenmalm, MC, et al. (2015) The gut microbiota and inflammatory noncommunicable diseases: associations and potentials for gut microbiota therapies. J Allergy Clin Immunol 135, 313.
5. Belkaid, Y & Hand, TW (2014) Role of the microbiota in immunity and inflammation. Cell 157, 121141.
6. Burton, T & Metcalfe, NB (2014) Can environmental conditions experienced in early life influence future generations? Proc Biol Sci 281, 20140311.
7. Rautava, S, Luoto, R, Salminen, S, et al. (2012) Microbial contact during pregnancy, intestinal colonization and human disease. Nat Rev Gastroenterol Hepatol 9, 565576.
8. von Hertzen, L, Beutler, B, Bienenstock, J, et al. (2015) Helsinki alert of biodiversity and health. Ann Med 47, 218225.
9. United Nation (2015) World urbanization prospects: the 2014 revision. Highlights. http://esa.un.org/unup/ (accessed May 2015).
10. De Filippo, C, Cavalieri, D, Di Paola, M, et al. (2010) Impact of diet in shaping gut microbiota revealed by a comparative study in children from Europe and rural Africa. Proc Natl Acad Sci U S A 107, 1469114696.
11. Yatsunenko, T, Rey, FE & Manary, MJ (2012) Human gut microbiome viewed across age and geography. Nature 486, 222227.
12. Martinez, I, Stegen, JC, Maldonado-Gomez, MX, et al. (2015) The gut microbiota of rural Papua New Guineans: composition, diversity patterns, and ecological processes. Cell Rep 11, 527538.
13 Jackson, CR, Randolph, KC, Osborn, SL, et al. (2013) Culture dependent and independent analysis of bacterial communities associated with commercial salad leafy vegetables. BMC Microbiol 13, 274.
14. Leff, JW & Fierer, N (2013) Bacterial communities associated with the surfaces of fresh fruits and vegetables. PLOS ONE 8, e59310.
15. Hessle, C, Andersson, B & Wold, AE (2000) Gram-positive bacteria are potent inducers of monocytic interleukin-12 (IL-12) while gram-negative bacteria preferentially stimulate IL-10 production. Infect Immun 68, 35813586.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed