Hostname: page-component-7bb8b95d7b-s9k8s Total loading time: 0 Render date: 2024-09-17T23:05:01.208Z Has data issue: false hasContentIssue false

Plantago ovata seeds as dietary fibre supplement: physiological and metabolic effects in rats

Published online by Cambridge University Press:  09 March 2007

Elke Leng-Peschlow
Affiliation:
Department of Pharmacology, Madaus AG, Ostmerheimer Str. 198, D-5000 Köln 91, Germany
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In rats, the effects of a 4-week supplementation of a fibre-free elemental diet with 100 or 200 g Plantago ovata seeds/kg was compared with that of the husks and wheat bran. The seeds increased faecal fresh weight up to 100%, faecal dry weight up to 50% and faecal water content up to 50%. The husks, at the high concentration only, were more effective and wheat bran less effective. Length and weight of the small intestine were not greatly affected by the seeds, but both variables increased significantly in the large intestine. The husks had more pronounced effects, especially in the small intestine, and wheat bran almost no effect. Faecal bacterial mass as estimated from the 2,6-diaminopimelic acid output was increased to the greatest extent by the seed-containing diet and by the high concentration of husks, but to a lesser extent by wheat bran. Faecal and caecal protein content was enhanced by the seeds and wheat bran, but to a lesser extent by the husks. Total acetate in caecal contents or faeces was highest on the seeds and husks diet and not elevated by wheat bran. Total faecal bile acid excretion was stimulated and β-glucuronidase (EC 3.2.1.31) activity reduced by both Plantago ovata preparations, but not by wheat bran. Mucosal digestive enzyme activities were inhibited to different degrees by all dietary fibres in the jejunum, and sometimes activated in the ileum. These results suggest that Plantago ovata seeds are a partly-fermentable dietary fibre supplement which increases stool bulk; metabolic and mucosa-protective effects are also probable.

Type
Metabolic and Physiological Effects of Fermentation
Copyright
Copyright © The Nutrition Society 1991

References

REFERENCES

Argenzio, R. A. & Southworth, M. (1975). Sites of organic acid production and absorption in gastrointestinal tract of the pig. American Journal of Physiology 228, 454460.CrossRefGoogle ScholarPubMed
Bardon, T. & Fioramonti, J. (1983). Nature of the effects of bran on digestive transit time in pigs. British Journal of Nutrition 50,685690.CrossRefGoogle ScholarPubMed
Bauer, H. G., Asp, N.-G., Öste, R., Dahlqvist, A. & Fredlund, P. E. (1979). Effect of dietary fiber on the induction of colorectal tumours and fecal β-glucuronidase activity in the rat. Cancer Research 39, 37523756.Google ScholarPubMed
Brodribb, A. J. M. & Groves, C. (1978). Effect of bran particle size on stool weight. Gut 19, 6063.CrossRefGoogle ScholarPubMed
Brown, R. C., Kelleher, J. & Losowsky, M. S. (1979). The effect of pectin on the structure and function of the rat small intestine. British Journal of Nutrition 42, 357365.CrossRefGoogle ScholarPubMed
Burton, R. & Manninen, V. (1982). Influence of a psyllium-based fibre preparation on faecal and serum parameters. Acta Medica Scandinavica Suppl. 668, 9194.CrossRefGoogle ScholarPubMed
Costa, M. A., Mehta, T. & Males, J. R. (1989). Effects of dietary cellulose and psyllium husk on monkey colonic microbial metabolism in continuous culture. Journal of Nutrition 119, 979985.CrossRefGoogle ScholarPubMed
Craven, P. A., Pfanstiel, J., Saito, R. & DeRuberties, F. R. (1986). Relationship between loss of rat colonic surface epithelium induced by deoxycholate and initiation of the subsequent proliferative response. Cancer Research 46, 57545759.Google ScholarPubMed
Cummings, J. H. (1984). Constipation, dietary fiber and control of large bowel function. Postgraduate Medical Journal 60, 811819.CrossRefGoogle ScholarPubMed
Cummings, J. H. & Branch, W. J. (1986). Fermentation and the production of short-chain fatty acids in the human large intestine. In Dietary Fiber, Basic and Clinical Aspects, pp. 131148 [Vahouny, G. V. and Kritchevsky, D., editors]. New York and London: Plenum Press.CrossRefGoogle Scholar
Czerkawski, J. W. (1974). Methods for determining 2,6-diaminopimelic acid and 2-aminoethylphosphonic acid in gut contents. Journal of the Science of Food and Agriculture 25, 4555.CrossRefGoogle ScholarPubMed
Dahlqvist, A. (1970). Assay of intestinal disaccharidases. Enzymologia Biologica Clinica 11, 5256.CrossRefGoogle ScholarPubMed
Danielsson, A., Ek, B., Nyhlin, H. & Steen, L. (1979). Effect of long term treatment with hydrophilic colloid on serum lipids. Acta Hepato-Gastroenterology 26, 148153.Google ScholarPubMed
Demigné, C. & Rémésy, C. (1985). Stimulation of absorption of volatile fatty acids and minerals in the cecum of rats adapted to a very high fiber diet. Journal of Nutrition 115, 5360.CrossRefGoogle ScholarPubMed
Dreher, M. L. (1987). Dietary fiber and its link to disease. In Handbook of Dietary Fiber. An Applied Approach, pp. 281322 [Dreher, M. L., editor]. New York and Basel: Marcel Dekker, Inc.Google Scholar
Dunaif, G. & Schneeman, B. O. (1981). The effect of dietary fiber on human pancreatic enzyme activity in vitro. American Journal of Clinical Nutrition 34, 10341035.CrossRefGoogle ScholarPubMed
Eastwood, M. A., Robertson, J. A., Brydon, W. G. & MacDonald, D. (1983). Measurement of water-holding properties of fibre and their faecal bulking ability in man. British Journal of Nutrition 50, 539547.CrossRefGoogle ScholarPubMed
Englyst, H. M., Bingham, S. A., Runswick, S. A., Collinson, E. & Cummings, J. H. (1989). Dietary fibre (non-starch polysaccharides) in cereal products. Journal of Human Nutrition and Dietetics 2, 253271.CrossRefGoogle Scholar
Evrard, E. & Janssen, J. (1968). Gas-liquid chromatograph determination of human fecal bile acids. Journal of Lipid Research 9, 226236.CrossRefGoogle ScholarPubMed
Farness, P. L. & Schneeman, B. O. (1982). Effects of dietary cellulose, pectin and oat bran on the small intestine in the rat. Journal of Nutrition 112, 13151319.CrossRefGoogle ScholarPubMed
Forman, D. T., Garvin, J. E., Forestner, J. E. & Taylor, C. B. (1968). Increased excretion of fecal bile acids by an oral hydrophilic colloid. Proceedings of the Society for Experimental Biology and Medicine 127, 10601063.CrossRefGoogle ScholarPubMed
Gadelle, D., Raibaud, P. & Sacquet, E. (1985). β-Glucuronidase activities of intestinal bacteria determined both in vitro and in vivo in gnotobiotic rats. Applied and Environmental Microbiology 49, 682685.CrossRefGoogle ScholarPubMed
Goerg, K. J., Gross, M., Nell, G., Rummel, W. & Schulz, L. (1980). Comparative study of the effect of cholera toxin and sodium deoxycholate on the paracellular permeability and on net fluid and electrolyte transfer in the ratcolon. Naunyn-Schmiedeberg's Archives of Pharmacology 312, 9197.CrossRefGoogle Scholar
Goldin, B. R., Dwyer, J., Gorbach, S. L., Gordon, W. &Swenson, L. (1978). Influence of diet and age on fecal bacterial enzymes. American Journal of Clinical Nutrition 31, 136140.CrossRefGoogle ScholarPubMed
Hansen, W. E. (1987). Effect of dietary fiber on pancreatic lipase activity in vitro. Pancreas 2, 195198.CrossRefGoogle ScholarPubMed
Head, M. R., Fukumoto, H. E. & Chang, G. W. (1988). Panereatobiliary and biliary control of fecal β-glucuronidase activity in the rat. Cancer Letters 39, 339344.CrossRefGoogle ScholarPubMed
Heckers, H. & Zielinsky, D. (1984).Google Scholar
Hirano, S., Masuda, N., Oda, H. & Imamura, T. (1981). Transformation of bile acids by mixed microbial cultures from human feces and bile acid transforming activities of isolated bacterial strains. Microbiology and Immunology 25, 271282.CrossRefGoogle ScholarPubMed
Hutton, K., Bailey, F. J. & Annison, E. F. (1971). Measurement of the bacterial nitrogen entering the duodenum of the ruminant using diaminopimelic acid as a marker. British Journal of Nutrition 25, 165173.CrossRefGoogle ScholarPubMed
Jacobs, L. R. & Lupton, J. R. (1982). Dietary wheat bran lowers colonic pH in rats. Journal of Nutrition 112, 592594.Google ScholarPubMed
Johnson, I. T. & Gee, J. M. (1986). Gastrointestinal adaptation in response to soluble non-available polysaccharides in the rat. British Journal of Nutrition 55, 497505.CrossRefGoogle ScholarPubMed
Johnson, I. T., Gee, J. M. & Mahoney, R. R. (1984). Effect of dietary supplements of guar gum and cellulose on intestinal proliferation, enzyme levels and sugar transport in the rat. British Journal of Nutrition 52, 477487.CrossRefGoogle ScholarPubMed
Kim, Y. S., Tsao, D., Siddiqui, B., Whitehead, J. S., Arnstein, P., Bennett, J. & Hicks, J. (1980). Effects of sodium butyrate and dimethylsulfoxide on biochemical properties of human colon cancer cells. Cancer 45, 11851192.3.0.CO;2-W>CrossRefGoogle ScholarPubMed
Leng-Peschlow, E. (1990). Interference of dietary fibres with gastrointestinal enzymes in vitro. Digestion 44, 200210.CrossRefGoogle Scholar
Leng-Peschlow, E. & Marty, J. (1979). Absorption of water, electrolytes and volatile fatty acids in the rabbit caecal pouch. Journal of Comparative Physiology 133, 205210.CrossRefGoogle Scholar
Ligny, G. (1988). Therapie des Colon irritabile. (Therapy of the irritable bowel syndrome.) Therapeuticon 7, 449453.Google Scholar
McKay, L. F. & Eastwood, M. A. (1983). The influence of dietary fibre on caecal metabolism in the rat. British Journal of Nutrition 50, 679684.CrossRefGoogle ScholarPubMed
Marlett, J. A., Ulysses, B., Li, K. & Bass, P. (1987). Comparative laxation of psyllium with and without senna in an ambulatory constipated population. American Journal of Gastroenterology 82, 333337.Google Scholar
Mitchell, B. L., Lawson, M. J., Davies, M., Grant, A. K., Roediger, W. E. W., Illman, R. J. & Topping, D. L. (1985). Volatile fatty acids in the human intestine: Studies in surgical patients. Nutrition Research 5, 10891092.CrossRefGoogle Scholar
Mongeau, R. & Brassard, R. (1982). Insoluble dietary fiber from breakfast cereals and brans: bile salt binding and water-holding capacity in relation to particle size. Cereal Chemistry 59, 413417.Google Scholar
Morotomi, M., Kawai, Y. & Mutai, M. (1979). Intestinal microflora and bile acids. In vitro cholic acid transformation by mixed fecal culture of rats. Microbiology and Immunology 23, 839847.CrossRefGoogle ScholarPubMed
Muller, D. E., Laeng, H. & Schindler, R. (1986). Butyrate-induced cell differentiation of cell-cycle mutants and ‘wild-type’ mastocytoma cells: Histamine, 5-hydroxytryptamine and metachromatic granules as independently regulated differentiation markers. Differentiation 32, 8288.CrossRefGoogle ScholarPubMed
Nishigori, Ch. & Takebe, H. (1987). Sodium butyrate stimulates cellular recovery from UV damage in xeroderma pigmentosum cells belonging to complementation group F. Japanese Journal of Cancer Research 78, 932936.Google ScholarPubMed
Nyman, M. & Asp, N.-G. (1982). Fermentation of dietary fiber components in the rat intestinal tract. British Journal of Nutrition 47,357366.CrossRefGoogle ScholarPubMed
Nyman, M. & Asp, N.-G. (1985). Bulk laxatives: Their dietary fibre composition, degradation, and faecal bulking capacity in the rat. ScandinavianJournal of Gastroenterology 20, 887895.CrossRefGoogle ScholarPubMed
Nyman, M., Asp, N.-G., Cummings, J. & Wiggins, H. (1986). Fermentation of dietary fibre in the intestinal tract: Comparison between man and rat. British Journal of Nutrition 55, 487496.CrossRefGoogle Scholar
Owen, R. W., Dodo, M., Thompson, M. H. & Hill, M. J. (1987). Faecal steroids and colorectal cancer. Nutrition and Cancer 9, 7380.CrossRefGoogle ScholarPubMed
Pilch, S. M. (1987). Recommendations for fiber intake in the United States. In Physiological Effects and Health Consequences of Dietary Fiher (FDA-Report), pp. 159163 [Pilch, M., editor]. Bethesda: Life Sciences Research Office, Federation of American Society for Experimental Biology.Google Scholar
Prosky, L., Asp, N. G., Furda, J., De Vries, J. W., Schweizer, T. F. & Harland, B. F. (1985). Determination of total dietary fiber in foods and food products: collaborative study. Journal of the Association of Official Analytical Chemists 68, 677679.Google ScholarPubMed
Prynne, C. J. & Southgate, D. A. T. (1979). The effects of a supplement of dietary fibre on faecal excretion by human subjects. British Journal of Nutrition 41, 495503.CrossRefGoogle ScholarPubMed
Rabe, E., Seibel, W., Suckow, P. & Meuser, F. (1988). Vergleichende Bestimmungen von unlöslichen, löslichen und Gesamtballaststoffen in Getreideerzeugnissen. (Comparative analyses of insoluble, soluble and total dietary fibre in cereals.) Getreide, Mehl und Brot 42, 297, 305.Google Scholar
Read, N. W. (1986). Dietary fiber and bowel transit. In Dietary Fiber, Basic and Clinical Aspects, pp. 81100 [Vahouny, G. V. and Kritchevsky, D., editors]. New York and London: Plenum Press.CrossRefGoogle Scholar
Rechkemmer, G., Rönnau, K. & von Engelhardt, W. (1988). Fermentation of polysaccharides and absorption of short chain fatty acids in the mammalian hindgut. Comparative Biochemistry and Physiology 90A, 563568.CrossRefGoogle Scholar
Reddy, B. S., Weisburger, J. H. & Wynder, E. L. (1974).Fecal bacterial β-glucuronidase: Control by diet. Science 183, 416417.CrossRefGoogle ScholarPubMed
Roberton, A. M., Lee, S. P., Kindop, R., Stanley, R. A., Thomsen, L. & Tasman-Jones, C. (1982). Biliary control of β-glucuronidase activity in the luminal contents of the rat ileum, caecum, and rectum. Cancer Research 42, 51655166.Google ScholarPubMed
Ruppin, H., Bar-Meir, S., Soergel, K. H., Wood, C. M. & Schmitt, M. G. (1980). Absorption of short-chain fatty acids by the colon. Gastroenterology 78, 15001507.CrossRefGoogle ScholarPubMed
Sakaguchi, E., Itoh, H., Uchida, S. & Horigome, T. (1987). Comparison of fibre digestion and digesta retention time between rabbits, guinea-pigs, rats and hamsters. British Journal of Nutrition 58, 149158.CrossRefGoogle Scholar
Sakata, T. (1986). Effects of indigestible dietary bulk and short-chain fatty acids on the tissue weight and epithelial cell proliferation rate of the digestive tract in rats. Journal of Nutrition Science and Vitaminology 32, 355362.CrossRefGoogle ScholarPubMed
Sakata, T. (1987). Stimulatory effect of short-chain fatty acids on epithelial cell proliferation in the rat intestine: a possible explanation for trophic effects of fermentable fibre, gut microbes and luminal trophic factors. British Journal of Nutrition 58, 95103.CrossRefGoogle ScholarPubMed
Sakata, T. (1988). Depression of intestinal epithelial cell production rate by hindgut bypass in rats. Scandinavian Journal of Gastroenterology 23, 12001202.CrossRefGoogle ScholarPubMed
Shiau, S.-Y. & Chang, G. W. (1983). Effects of dietary fiber on fecal mucinase and β-glucuronidase activity in rats. Journal of Nutrition 113, 138144.CrossRefGoogle ScholarPubMed
Sölter, H. & Lorenz, D. (1983). Summary of clinical results with prodiem plain, a bowel-regulating agent. Today's Therapeutic Trends 1, 4559.Google Scholar
Sosulski, F. W. & Cadden, A. M. (1982). Composition and physiological properties of several sources of dietary fiber. Journal of Food Science 47, 14721477.CrossRefGoogle Scholar
Stephen, A. M. & Cummings, J. H. (1980). The microbial contribution to human faecal mass. Journal of Medical Microbiology 13, 4556.CrossRefGoogle ScholarPubMed
Stevens, J., Van Soest, P. J., Robertson, J. B. & Levitsky, D. A. (1988). Comparison of the effects of psyllium and wheat bran on gastrointestinal transit time and stool characteristics. Journal of the American Dietetic Association 88, 323326.CrossRefGoogle ScholarPubMed
Struthers, B. J. (1986). Warning: Feeding animals hydrophilic fiber sources in dry diets. Journal of Nutrition 116, 47, 49.CrossRefGoogle ScholarPubMed
Sud, S., Mahapatra, S. C., Biljani, R. L. & Nayar, U. (1988). Effect of cellulose and ispaghula husk on small intestinal structure of young rats and hamsters. Indian Journal of Medical Research 87, 631636.Google ScholarPubMed
Sun, Y. & Li, Y. (1988). Induction of beta-glucuronidase activity during dimethylhydrazine carcinogenesis and additive effects of cholic acids and indole. Cancer Letters 39, 6976.CrossRefGoogle ScholarPubMed
Takada, H., Hirooka, T., Hiramatsu, Y. & Yamamoto, M. (1982). Effect of β-glucuronidase inhibitor on azoxymethane-induced colonic carcinogenesis in rats. Cancer Research 42, 331334.Google ScholarPubMed
Topping, D. L., Mock, S., Trimble, R. P., Storer, G. B. & Illman, R. J. (1988). Effects of varying the content and proportions of gum arabic and cellulose on caecal volatile fatty acid concentrations in the rat. Nutrition Research 8, 10131020.CrossRefGoogle Scholar
Vahouny, G. V., Le, T., Ifrim, I., Satchithanandam, S. & Cassidy, M. M. (1985). Stimulation of intestinal cytokinetics and mucin turnover in rats fed wheat bran or cellulose. American Journal of Clinical Nutrition 41, 895900.CrossRefGoogle ScholarPubMed
Van Soest, P. J. (1984). Some physical characteristics of dietary fibres and their influence on the microbial ecology of the human colon. Proceedings of the Nutrition Society 43, 2533.CrossRefGoogle ScholarPubMed
Vernia, P., Breuer, R. I., Gnaedinger, A., Latella, G. & Santoro, M. L. (1984). Composition of fecal water. Comparison of ‘in vitro’ dialysis with ultrafiltration. Gastroenterology 86, 15571561.CrossRefGoogle ScholarPubMed
Walter, D. J., Eastwood, M. A. & Brydon, W. G. (1986). An experimental design to study colonic fibre fermentation in the rat: the duration of feeding. British Journal of Nutrition 55, 465479.CrossRefGoogle ScholarPubMed
Walter, D. J., Eastwood, M. A. & Brydon, W. G. (1988). Fermentation of wheat bran and gum arabic in rats fed on elemental diet. British Journal of Nutrition 60, 225232.CrossRefGoogle ScholarPubMed
Wilpart, M., Mainguet, P. & Roberfroid, M. (1987). Intestinal carcinogenesis and dietary fibres. Influence of cellulose or fybogel as constituent of low and high fat diets given chronically after the period of exposure to dimethylhydrazine. Scandinavian Journal of Gastroenterology 22, Suppl. 129, 285.CrossRefGoogle Scholar
Work, E. & Dewey, D. L. (1953). The distribution of α,-diaminopimelic acid among various micro-organisms. Journal of General Microbiology 9, 394409.CrossRefGoogle Scholar
Wyatt, G. M., Horn, N., Gee, J. M. & Johnson, I. T. (1988). Intestinal microflora and gastrointestinal adaptation in the rat in response to non-digestible dietary polysaccharides. British Journal of Nutrition 60, 197207.CrossRefGoogle ScholarPubMed