Skip to main content

Postprandial metabolic events and fruit-derived phenolics: a review of the science

  • Britt Burton-Freeman (a1) (a2)

There is increasing evidence that the postprandial state is an important contributing factor to chronic disease. The role of fruit phenolic compounds to protect health and lower disease risk through their actions in mitigating fed-state metabolic and oxidative stressors is of interest and the topic of the present paper. Two main questions are posed: first, what is the role of plant foods, specifically fruits rich in complex and simple phenolic compounds in postprandial metabolic management; and second, does the evidence support consuming these fruits with meals as a practical strategy to preserve health and lower risk for disease? This review provides an overview of the postprandial literature, specifically on the effect of fruits and their inherent phenolic compounds in human subjects on postprandial lipaemia, glycaemia/insulinaemia and associated events, such as oxidative stress and inflammation. Among the identified well-controlled human trials using a postprandial paradigm, >50 % of the trials used wine or wine components and the remaining used various berries. Notwithstanding the need for more research, the collected data suggest that consuming phenolic-rich fruits increases the antioxidant capacity of the blood, and when they are consumed with high fat and carbohydrate ‘pro-oxidant and pro-inflammatory’ meals, they may counterbalance their negative effects. Given the content and availability of fat and carbohydrate in the Western diet, regular consumption of phenolic-rich foods, particularly in conjunction with meals, appears to be a prudent strategy to maintain oxidative balance and health.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Postprandial metabolic events and fruit-derived phenolics: a review of the science
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Postprandial metabolic events and fruit-derived phenolics: a review of the science
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Postprandial metabolic events and fruit-derived phenolics: a review of the science
      Available formats
Corresponding author
*Corresponding author: B. Burton-Freeman, email;
Hide All
1 Hu, FR, Rimm, EB, Stampfer, MJ, et al. (2000) Prospective study of major dietary patterns and risk of coronary heart disease in men. Am J Clin Nutr 72, 912921.
2 Kant, AK, Graubard, BI & Schatzkin, A (2004) Dietary patterns predict mortality in a national cohort: the National Health Interview Surveys, 1987 and 1992. J Nutr 134, 17931799.
3 Mokdad, AH, Marks, JS, Stroup, DF, et al. (2000) Actual causes of death in the United States. JAMA 291, 12381245.
4 Alipour, A, Elte, JWF, van Zaanen, HCT, et al. (2007) Postprandial inflammation and endothelial dysfunction. Biochem Soc Trans 35, 464469.
5 Nappo, F, Esposito, K, Coiffi, M, et al. (2002) Postprandial endothelial activation in healthy subjects and in type 2 diabetic patients: role of fat and carbohydrate meals. J Am Coll Cardiol 39, 11451150.
6 Sies, H, Stahl, W & Sevanian, A (2005) Nutritional, dietary and postprandial oxidative stress. Am Soc Nutr Sci 135, 969972.
7 Rizzo, M, Kotur-Stevuljevic, J, Berneis, K, et al. (2009) Atherogenic dyslipidemia and oxidative stress: a new look. Transl Res 153, 217223.
8 Ursini, F, Zamburlini, A, Cazzolato, G, et al. (1998) Postprandial plasma lipid hydroperoxides: a possible link between diet and atherosclerosis. Free Radic Biol Med 25, 250252.
9 van Oostrom, AJ, van Wijk, JPH & Cabezas, MC (2004) Lipaemia, inflammation and atherosclerosis: novel opportunities in the understanding and treatment of atherosclerosis. Drugs 64, Suppl. 2, 1941.
10 Burton-Freeman, B, Linares, A, Hyson, D, et al. (2010) Strawberry modulates LDL oxidation and postprandial lipemia in response to high fat meal in overweight hyperlipidemic men and women. Am J Coll Nutr 29, 4654.
11 Kris-Etherton, PM, Lefevre, M, Beecher, GR, et al. (2004) Bioactive compounds in nutrition and health-research methodologies for establishing biological function: the antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Annu Rev Nutr 24, 511538.
12 Most, MM (2004) Estimated phytochemical content of the dietary approaches to stop hypertension (DASH) diet is higher than in the Control Study Diet. J Am Diet Assoc 104, 17251727.
13 Knekt, P, Kumpulainen, J, Järvinen, R, et al. (2002) Flavonoid intake and risk of chronic diseases. Am J Clin Nutr 76, 560568.
14 Mennen, LI, Sapinho, D, de Bree, A, et al. (2004) Consumption of foods rich in flavanoids to a decreased cardiovacular risk in apparently healthy French woman. Am Soc Nutr Sci 134, 923926.
15 Rice-Evans, CA, Miller, NJ & Paganga, G (1996) Structure–antioxidant activity relationships of flavonoids and phenolic acids. Free Radic Biol Med 20, 933956.
16 Sampson, L, Rimm, E, Hollman, PC, et al. (2002) Flavonol and flavone intakes in US health professionals. J Am Diet Assoc 102, 14141420.
17 Hertog, M & Kromhout, D (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries. Arch Intern Med 155, 381386.
18 Hertog, MG, Feskens, EJ & Kromhout, D (1997) Antioxidant flavonols and coronary heart disease risk. Lancet 349, 699703.
19 Pérez-Jiménez, J, Neveu, V, Vos, F, et al. (2010) Systematic analysis of the content of 502 polyphenols in 452 foods and beverages: an application of the phenol-explorer database. J Agric Food Chem 58, 49594969.
20 Shanmuganayagam, D, Beahm, MR, Osman, HE, et al. (2002) Grape seed and grape skin extracts elicit a greater antiplatelet effect when used in combination than when used individually in dogs and humans. J Nutr 132, 35923598.
21 Rein, D, Paglieroni, TG, Pearson, DA, et al. (2000) Cocoa and wine polyphenols modulate platelet activation and function. J Nutr 130, Suppl. 8, 2120S2126S.
22 Zern, TL & Fernandez, ML (2005) Cardioprotective effects of dietary polyphenols. J Nutr 135, 22912294.
23 Williams, MJ, Sutherland, WH, Whelan, AP, et al. (2004) Acute effect of drinking red and white wines on circulating levels of inflammation-sensitive molecules in men with coronary artery disease. Metabolism 53, 318323.
24 Agarwal, C, Sharma, Y & Agarwal, R (2000) Anticarcinogenic effect of a polyphenolic fraction isolated from grape seeds in human prostate carcinoma DU145 cells: modulation of mitogenic signaling and cell-cycle regulators and induction of G1 arrest and apoptosis. Mol Carcinog 28, 129138.
25 Agarwal, C, Sharma, Y, Zhao, J & Agarwal, R (2000) A polyphenolic fraction from grape seeds causes irreversible growth inhibition of breast carcinoma MDA-MB468 cells by inhibiting mitogen-activated protein kinases activation and inducing G1 arrest and differentiation. Clin Cancer Res 6, 29212930.
26 Crozier, A, Jaganath, IB & Clifford, MN (2009) Dietary phenolics: chemistry, bioavailability and effects on health. Nat Prod Rep 26, 10011043.
27 Prior, R, Wu, X & Schaich, K (2005) Standardized methods for the determination of antioxidant capacity and phenolics in foods and dietary supplements. J Agric Food Chem 53, 42904302.
28 Szajdek, A & Borowska, E (2008) Bioactive compounds and health-promoting properties of berry fruits: a review. Plant Foods Hum Nutr (Dordrecht) 63, 147156.
29 Vinson, JA, Dabbagh, YA, Serry, MM, et al. (1995) Plant Flavonoids, especially tea flavonols, are powerful antioxidants using as in vitro oxidation model for heart disease. J Agric Food Chem 43, 28002802.
30 Vinson, JA, So, X, Zubik, L, et al. (2001) Phenol antioxidant quality and quality in foods: fruit. J Agric Food Chem 49, 53155321.
31 Chun, OK, Chung, SJ & Song, WO (2007) Estimated dietary flavonoid intake and major food sources of U.S. adults. J Nutr 137, 12441252.
32 Cao, J, Zhang, Y, Chen, W, et al. (2010) The relationship between fasting plasma concentrations of selected flavonoids and their ordinary dietary intake. Br J Nutr 103, 249255.
33 Hertog, GL, Kromhout, D, Aravanis, C, et al. (1995) Flavonoid intake and long-term risk of coronary heart disease and cancer in the seven countries study. Arch Intern Med 155, 381386.
34 USDA database for the flavonoid content of selected foods. Release 2.1 Jan 2007. (accessed September 2009).
35 Nijveldt, RJ, van Nood, E, van Hoorn, DEC, et al. (2001) Flavonoids: a review of probable mechanisms of action and potential applications. Am J Clin Nutr 74, 418425.
36 Galleano, M, Verstraeten, SV, Oteiza, PI, et al. (2010) Antioxidant actions of flavonoids: thermodynamic and kinetic analysis. Arch Biochem Biophys 501, 2330.
37 Afanas'ev, IB, Dorozhko, AI, Brodskii, AV, et al. (1989) Chelating and free radical scavenging mechanisms of inhibitory action of rutin and quercetin in lipid peroxidation. Biochem Pharmacol 38, 17631769.
38 Ferrali, M, Signorini, C, Caciotti, B, et al. (1997) Protection against oxidative damage of erythrocyte membrane by the flavonoid quercetin and its relation to iron chelating activity. FEBS Lett 416, 123129.
39 Kostyuk, VA, Potapovich, AI, Strigunova, EN, et al. (2004) Experimental evidence that flavonoid metal complexes may act as mimics of superoxide dismutase. Arch Biochem Biophys 428, 204208.
40 Maenpaa, PH, Raivio, KO & Kekomaki, MP (1968) Liver adenine nucleotides: fructose-induced depletion and its effect on protein synthesis. Science 161, 12531254.
41 Heuckenkamp, PU & Zollner, N (1971) Fructose-induced hyperuricaemia. Lancet 1, 808809.
42 Cao, G, Russell, RM, Lischner, N, et al. (1998) Serum antioxidant capacity is increased by consumption of strawberries, spinach, red wine or vitamin C in elderly woman. J Nutr 98, 2383–2309.
43 Lotito, SB & Frei, B (2004) The increase in human plasma antioxidant capacity after apple consumption is due to the metabolic effect of fructose on urate, not apple-derived antioxidant flavonoids. Free Radic Biol Med 37, 251258.
44 Ursini, F & Sevanian, A (2002) Wine polyphenols and optimal nutrition. Ann N Y Acad Sci 957, 200209.
45 Schreck, R, Meier, B, Mannel, DN, et al. (1992) Dithiocarbamates as potent inhibitors of nuclear factor kB activation in intact cells. J Exp Med 175, 11811194.
46 Blanco-Colio, LM, Valderrama, M, Alvarez-Sala, LA, et al. (2000) Red wine intake prevents nuclear factor-kappaB activation in peripheral blood mononuclear cells of healthy volunteers during postprandial lipemia. Circulation 102, 10201026.
47 Sandhya, K, Tadapaneni, R, Banaszewski, K, et al. (2010) Strawberry extract attenuates oxidative stress-induced impaired insulin signaling in vitro in Human Skeletal Muscle Cells. FASEB J 24, 541.13.
48 Lin, CL & Lin, JK (2008) Epigallocatechin gallate (EGCG) attenuates high glucose-induced insulin signaling blockade in human hepG2 hepatoma cells. Mol Nutr Food Res 52, 930939.
49 Ndiaye, M, Chataigneau, M, Lobysheva, I, et al. (2004) Red wine polyphenol-induced, endothelium-dependent NO-mediated relaxation is due to the redox-sensitive PI3-kinase/Akt-dependent phosphorylation of endothelial NO-synthase in the isolated porcine coronary artery. FASEB J 19, 455457.
50 Edirisinghe, I, Burton-Freeman, B & Tissa Kappagoda, C (2008) Mechanism of the endothelium-dependent relaxation evoked by a grape seed extract. Clin Sci (Lond) 114, 331337.
51 Edirisinghe, I, Burton-Freeman, B, Varelis, P, et al. (2008) Strawberry extract caused endothelium-dependent relaxation through the activation of PI3 kinase/Akt. J Agric Food Chem 56, 93839390.
52 Manach, C, Williamson, G, Morand, C, et al. (2005) Bioavailability and bioefficacy of polyphenols in humans. I. Review of 97 bioavailability studies. Am J Clin Nutr 81, Suppl. 1, 230S242S.
53 Hollman, PC, van Trijp, JM, Buysman, MN, et al. (1997) Relative bioavailability of the antioxidant flavonoid quercetin from various foods in man. FEBS Lett 418, 152156.
54 Ceriello, A, Bortolotti, N, Motz, E, et al. (2001) Red wine protects diabetic patients from meal-induced oxidative stress and thrombosis activation: a pleasant approach to the prevention of cardiovascular disease in diabetes. Eur J Clin Invest 31, 322328.
55 Chung, BH, Hennig, B, Cho, BHS, et al. (1998) Effect of the fat consumption of a single meal on the composition and cytotoxis potencies of lipolytically-released free fatty acids in postprandial plasma. Atherosclerosis 141, 321332.
56 Ceriello, A, Taboga, C, Tonutti, L, et al. (2002) Evidence for an independent and cumulative effect of postprandial hypertriglyceridemia and hyperglycemia on endothelial dysfunction and oxidative stress generation: effects of short- and long-term simvastatin treatment. Circulation 106, 12111218.
57 Laakso, M (1999) Hyperglycemia and cardiovascular disease in type 2 diabetes. Diabetes 44, 937942.
58 Ceriello, A (1998) The emerging role of post-prandial hyperglycaemic spikes in the pathogenesis of diabetic complications. Diabet Med 15, 188193.
59 Stratton, IM, Adler, AI, Neil, HA, et al. (2000) Association of glycaemia with macrovascular and microvascular complications of type 2 diabetes (UKPDS 35). BMJ 321, 405412.
60 Fernandez-Panchon, MS, Villano, D, Troncoso, AM, et al. (2008) Antioxidant activity of phenolic compounds: from In vitro results to In vitro evidence. Crit Rev Food Sci Nutr 48, 649671.
61 Prior, R, Gu, L, Wu, X, et al. (2007) Plasma antioxidant capacity changes following a meal as a measure of the ability of a food to alter in vivo antioxidant status. J Am Coll Nutr 26, 170181.
62 Lotito, SB & Frei, B (2004) Relevance of apple polyphenols as antioxidants in human plasma: contrasting in vitro and in vitro effects. Free Radic Biol Med 36, 201211.
63 de Rijke, YB, Demacker, PN, Assen, NA, et al. (1996) Red wine consumption does not affect oxidizability of low-density lipoproteins in volunteers. Am J Clin Nutr 63, 329334.
64 Caccetta, RAA, Croft, KD, Beilin, LJ, et al. (2000) Ingestion of red wine significantly increases plasma phenolic acid concentrations but does not acutely affect ex vivo lipoprotein oxidizability. Am J Clin Nutr 71, 6774.
65 Ko, S, Choi, S, Ye, S, et al. (2005) Comparison of the antioxidant activities of nine different fruits in human plasma. J Med Food 8, 4146.
66 Carbonneau, MA, Léger, CL, Monnier, L, et al. (1997) Supplementation with wine phenolic compounds increases the antioxidant capacity of plasma and vitamin E of low-density lipoprotein without changing the lipoprotein Cu(2+)-oxidizability: possible explanation by phenolic location. Evr J Clin Nutr 51, 682690.
67 Williams, RJ, Spencer, JP, Rice-Evans, C, et al. (2004) Flavonoids: antioxidants or signalling molecules? Free Radic Biol Med 36, 838849.
68 Nivoit, P, Wiernsperger, N, Moulin, P, et al. (2003) Effect of glycated LDL on microvascular tone in mice: a comparative study with LDL modified in vitro or isolated from diabetic patients. Diabetologia 46, 15501558.
69 Ceriello, A, Quagliaro, L, Catone, B, et al. (2002) Role of hyperglycemia in nitrotyrosine postprandial generation. Diabetes Care 25, 14391443.
70 Diwadkar, VA, Anderson, JW, Bridges, SR, et al. (1999) Postprandial low-density lipoproteins in type 2 diabetes are oxidized more extensively than fasting diabetes and control samples. Proc Soc Exp Biol Med 222, 178184.
71 Steinberg, D & Lewis, A (1997) Conner Memorial Lecture: oxidative modification of LDL and atherogenesis. Circulation 95, 10621091.
72 Berliner, JA, Novab, M, Fogelman, AM, et al. (1995) Atherosclerosis: basic mechanisms – oxidation, inflammation and genetics. Circulation 91, 24882496.
73 Wilson, T, Singh, AP, Vorsa, N, et al. (2008) Human glycemic response and phenolic content of unsweetened cranberry juice. J Med Food 11, 4654.
74 Vinson, JA, Bose, P, Proch, J, et al. (2008) Cranberries and cranberry products: powerful in vitro, ex vitro and in vitro sources of antioxidants. J Agric Food Chem 56, 58845891.
75 Kay, CD & Holub, BJ (2002) The effect of wild blueberry (Vaccinium angustifolium) consumption postprandial serum antioxidant status in human subjects. Br J Nutr 88, 389397.
76 Erdmann, J, Topsch, R, Lippl, F, et al. (2004) Postprandial response of plasma ghrelin levels to various test meals in relation to food intake, plasma insulin, and glucose. J Clin Endocrinol Metab 89, 30483054.
77 Natella, F, Ghiselli, A, Gudi, A, et al. (2001) Red wine mitigates the postprandial increase of LDL susceptibility to oxidation. Free Radic Biol Med 30, 10361044.
78 Naissides, M, Mamo, J, James, A, et al. (2004) The effect of acute red wine polyphenol consumption on postprandial lipaemia in postmenopausal women. Atherosclerosis 177, 401408.
79 Pal, S, Naissides, M & Mamo, J (2004) Polyphenolics and fat absorption. Int J Obes 28, 324326.
80 Cermak, R, Landgraf, S & Wolffram, S (2004) Quercetin glucosides inhibit glucose uptake into brush-border-membrane vesicles of porcine jejunum. Br J Nutr 91, 849855.
81 Strobel, P, Allard, C, Perez-Acle, T, et al. (2005) Myricetin, quercetin and catechin-gallate inhibit glucose uptake in isolated rat adipocytes. Biochem J 386, Pt 3, 471478.
82 Kannappan, S & Anuradha, CV (2009) Insulin sensitizing actions of fenugreek seed polyphenols, quercetin & metformin in a rat model. Indian J Med Res 129, 401408.
83 Bashan, N, Kovsan, J, Kachko, I, et al. (2009) Positive and negative regulation of insulin signaling by reactive oxygen and nitrogen species. Physiol Rev 89, 2771.
84 Edirisinghe, I, Krishnankutty, S, Cappozzo, J, et al. Postprandial oxidative/inflammatory-stress: restoring balance with strawberry polyphenols and exploring mechanisms of enhanced insulin signaling in vitro in human skeletal muscle cells (Submitted).
85 Patsch, JR, Miesenbock, G, Hopferwieser, T, et al. (1992) Relations of triglyceride metabolism and coronary artery disease: studies in the postprandial state. Arterioscler Thromb 12, 13361345.
86 Bansal, S, Buring, JE, Rifai, N, et al. (2007) Fasting compared with nonfasting triglycerides and risk of cardiovascular events in women. JAMA 298, 309316.
87 Alipour, A, Elte, JWF, van Zaanen, HCT, et al. (2008) Novel aspects of postprandial lipemia in relation to atherosclerosis. Atheroscler Suppl 9, 3944.
88 Shoelson, SE, Lee, J & Goldfine, AB (2006) Inflammation and insulin resistance. J Clin Invest 116, 17931801.
89 Hyson, DA, Paglieroni, TG, Wun, T, et al. (2002) Postprandial lipemia is associated with platelet and monocyte activation and increased monocyte cytokine expression in normolipemic men. Clin Appl Thromb Hemost 8, 147155.
90 Motton, DD, Keim, NL, Tenorio, FA, et al. (2007) Postprandial monocyte activation in response to meals with high and low glycemic loads in overweight women. Am J Clin Nutr 85, 6065.
91 Esposito, K, Nappo, F, Marfella, R, et al. (2002) Inflammatory cytokine concentrations are acutely increased by hyperglycemia in humans: role of oxidative stress. Circulation 106, 20672072.
92 Mohanty, P, Hamouda, W, Garg, R, et al. (2000) Glucose challenge stimulates reactive oxygen species (ROS) generation by leucocytes. J Clin Endocrinol Metab 85, 29702973.
93 Fuhrman, B & Aviram, M (2001) Flavanoids protect LDL from oxidation and attenuate atherosclerosis. Cur Opin Lipid 12, 4148.
94 Kris-Etherton, PM, Lefevre, M, Beecher, GR, et al. (2004) Bioactive compounds in nutrition and health-research methodologies for establishing biological function: the antioxidant and anti-inflammatory effects of flavonoids on atherosclerosis. Annu Rev Nutr 24, 511538.
95 Mazza, G, Kay, C, Cottrell, T, et al. (2002) Absorption of anthocyanins from blueberries and serum antioxidant status in human subjects. J Agric Food Chem 50, 77317737.
96 Serafini, M, Testa, MF, Villaño, D, et al. (2009) Antioxidant activity of blueberry fruit is impaired by association with milk. Free Radic Biol Med 46, 769774.
97 Natella, F, Belelli, F, Gentili, V, et al. (2002) Grape seed proanthocyanidins prevent plasma postprandial oxidative stress in humans. J Agric Food Chem 50, 77207725.
98 Sugiyama, H, Akazome, Y, Shoji, T, et al. (2007) Oligomeric procyanidins in apple polyphenol are main active components for inhibition of pancreatic lipase and triglyceride absorption. J Agric Food Chem 55, 46044609.
99 Décordé, K, Teissedre, Pl, Sutra, T, et al. (2009) Chardonnay grape seed procyanidin extract supplementation prevents high-fat diet-induced obesity in hamsters by improving adipokine imbalance and oxidative stress markers. Mol Nutr Food Res 53, 659666.
100 Imazu, M, Ono, K, Tadehara, F, et al. (2008) Plasma levels of oxidized low density lipoprotein are associated with stable angina pectoris and modalities of acute coronary syndrome. Int Heart J 49, 515524.
101 Berliner, JA, Navab, M, Fogelman, AM, et al. (1995) Atherosclerosis: basic mechanisms. Oxidation, inflammation, and genetics. Circulation 91, 24882496.
102 Lu, C, Gao, Y, Zhou, H, et al. (2008) The relationships between PON1 activity as well as oxLDL levels and coronary artery lesions in CHD patients with diabetes mellitus or impaired fasting glucose. Coron Artery Dis 19, 565573.
103 Meisinger, C, Baumert, J, Khuseyinova, N, et al. (2005) Plasma oxidation low-density lipoprotein, a strong predictor for acute coronary heart disease events in apparently healthy middle-aged men from the general population. J Am Heart Assoc 112, 651657.
104 Miyagi, Y, Miwa, K & Inoue, H (1997) Inhibition of human low–density lipoprotein oxidation by flavonoids in red wine and grape juice. Am J Cardiol 80, 16271631.
105 Neri, S, Signorelli, SS, Torrisi, B, et al. (2005) Effects of antioxidant supplementation on postprandial oxidative stress and endothelial dysfunction: a single-blind, 15-day clinical trial in patients with untreated type 2 diabetes, subjects with impaired glucose tolerance, and healthy controls. Clin Ther 27, 17641773.
106 Parker, TL, Wang, XH, Pazmiño, J, et al. (2007) Antioxidant capacity and phenolic content of grapes, sun-dried raisins, and golden raisins and their effect on ex vivo serum antioxidant capacity. J Agric Food Chem 55, 84728477.
107 Marniemi, J, Hakala, P, Mäki, J, et al. (2000) Partial resistance of low density lipoprotein to oxidation in vivo after increased intake of berries. Nutr Metab Cardiovasc Dis 10, 331337.
108 Lapointe, A, Couillard, C & Lemieux, S (2006) Effects of dietary factors on oxidation of low-density lipoprotein particles. J Nutr Biochem 17, 645658.
109 Aviram, M, Dornfeld, L, Resenblat, M, et al. (2000) Pomegranate juice consumption reduces oxidative stress, atherogenic modifications to LDL, and platelet aggregation: studies in humans and in atherosclerotic apolipoprotein E-deficient mice. Am J Clin Nutr 71, 10621076.
110 Lechleitner, M, Hoppichler, F, Föger, B, et al. (1994) Low-density lipoproteins of the postprandial state induce cellular cholesteryl ester accumulation in macrophages. Arterioscler Thromb 14, 17991807.
111 Wolff, SP & Nourooz-Zadeh, J (1996) Hypothesis: UK consumption of dietary lipid hydroperoxides – a possible contributory factor to atherosclerosis. Atherosclerosis 119, 261263.
112 Aviram, M, Kaplan, M, Rosenblat, M, et al. (2005) Dietary antioxidants and paraoxonases in LDL oxidation and atherosclerosis development. Handb Exp Pharmacol 170, 263300.
113 Lamuela-Raventos, RM, Covas, MI, Frito, M, et al. (1999) Detection of dietary antioxidant phenolic compounds in human LDL. Clin Chem 45, 18701872.
114 Witzum, JL (1994) The oxidation hypothesis of atherosclerosis. Lancet 344, 793795.
115 Tikkanen, KJ, Wahala, K, Ojala, S, et al. (1998) Effect of soybean phytoestrogen intake on low density lipoprotein oxidation resistance. Proc Natl Acad Sci USA 95, 31063110.
116 Ziegler, S, Kostner, K, Thallinger, C, et al. (2005) Wine ingestion has no effect on lipid peroxidation products. Pharmacology 75, 152156.
117 Tesoriere, L, Allegra, M, Butera, D, et al. (2004) Absorption, excretion, and distribution of dietary antioxidant betalains in LDLs: potential health effects of betalains in humans. Am J Clin Nutr 80, 941945.
118 Alberti, KG, Eckel, RH, Grundy, SM, et al. (2009) Harmonizing the metabolic syndrome: a joint interim statement of the International Diabetes Federation Task Force on Epidemiology and Prevention; National Heart, Lung, and Blood Institute; American Heart Association; World Heart Federation; International Atherosclerosis Society; and international association for the Study of Obesity. Circulation 120, 16401645.
119 Kojima, M, Hosoda, H, Date, Y, et al. (1999) Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature 402, 656660.
120 Erdmann, J, Lipple, F & Schusdziarra, V (2003) Differential effect of protein and fat on ghrelin levels in man. Regul Pept 116, 101107.
121 Lloyd-Jones, D, Adams, R, Carnethon, M, et al. (2009) Heart disease and stroke statistics – 2009 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 119, 480486.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed