Skip to main content
×
×
Home

Prebiotic effects of inulin and oligofructose

  • S. Kolida (a1), K. Tuohy (a1) and G. R. Gibson (a1)
Abstract

Prebiotics are non-digestible food ingredients that target certain components within the microbiota of the human large intestine. Efficient prebiotics need to have a specific fermentation therein and thereby have the ability to alter the faecal microflora composition towards a more ‘beneficial’ community structure. This should occur by the stimulation of benign or potentially health promoting genera but not the harmful groups. Because of their positive attributes bifidobacteria and lactobacilli are the most frequent target organisms. Both inulin and oligofructose have been demonstrated to be effective prebiotics. This has been shown through both in vitro and in vivo assessments in different laboratories. Because of their recognised prebiotic properties, principally the selective stimulation of colonic bifidobacteria, both inulin and oligofructose are increasingly used in new food product developments. Examples include drinks, yoghurts, biscuits and table spreads. Because of the recognised inhibitory effects that bifidobacteria can exert against gut pathogens, one of the most important aspects of prebiotic ingestion is fortification of the gut flora to resist acute infections.

    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Prebiotic effects of inulin and oligofructose
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Prebiotic effects of inulin and oligofructose
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Prebiotic effects of inulin and oligofructose
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr S. Kolida, fax +44 (0)1189 357222, email afr99sk@reading.ac.uk
References
Hide All
Blaut, M, Criggs, C, Collins, MD, Welling, GW, Doré, J, Van Loo, J & de Vos, W (2002) Molecular biological methods for studying the gut microbiota: the EU human gut flora project. British Journal of Nutrition 87, S203S211, this issue.
Bouhnik, Y, Flourie, B, Andrieux, C, Bisetti, N, Briet, F & Rambaud, JC (1996) Effects of Bifidobacterium sp fermented milk ingested with or without inulin on colonic bacteria and enzymatic activities in healthy humans. European Journal of Clinical Nutrition 50, 269273.
Bouhnik, Y, Vahedi, K, Achour, L, Attar, A, Salfati, J, Pochart, P, Marteau, P, Flourie, B, Bornet, F & Rambaud, JC (1999) Short-chain fructo-oligosaccharide administration dose dependently increases fecal bifidobacteria in healthy humans. Journal of Nutrition 129, 113116.
Buddington, RK, Williams, CH, Chen, SC & Witherly, SA (1996) Dietary supplement of neosugar alters the faecal flora and decreases the activities of some reductive enzymes in human subjects. American Journal of Clinical Nutrition 63, 709716.
Coussement, PAA (1999) Inulin and oligofructose: Safe intakes and legal status. Journal of Nutrition 129, S1412S1417.
Crittenden, RG & Playne, MJ (1996) Production, properties and applications of food-grade oligosaccharides. Trends in Food Science and Technology 7, 353361.
Den Hond, E, Geypens, B & Ghoos, Y (2000) Effect if high performance chicory inulin on constipation. Nutrition Research 20, 731736.
Djouzi, Z & Andrieux, C (1997) Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. British Journal of Nutrition 78, 313324.
Gibson, GR (1998) Dietary modulation of the human gut microflora using prebiotics. British Journal of Nutrition 80, S209S212.
Gibson, GR & Roberfroid, MB (1995) Dietary modulation of the human colonic microflora: introducing the concept of prebiotics. Journal of Nutrition 125, 14011412.
Gibson, GR & Wang, X (1994) Enrichment of bifidobacteria from human gut contents by oligofructose using continuous culture. FEMS Microbiology Letters 118, 121128.
Gibson, GR, Berry Ottaway, P & Rastall, RA (2000) Prebiotics: New Developments in Functional Foods. Oxford: Chandos Publishing Limited.
Gibson, GR, Beatty, ER, Wang, X & Cummings, JH (1995) Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.
Hopkins, MJ, Cummings, JH & Macfarlane, GT (1998) Inter-species differences in maximum specific growth rates and cell yields of bifidobacteria cultured on oligosaccharides and other simple carbohydrate sources. Journal of Applied Microbiology 85, 381386.
Hunter, JO, Tuffnel, Q & Lee, AJ (1993) Controlled trial of oligofructose management of irritable bowel syndrome. Journal of Nutrition 129, 14511453.
Kaplan, H & Hutkins, RW (2000) Fermentation of fructooligosaccharides by lactic acid bacteria and bifidobacteria. Applied and Environmental Microbiology 66, 26822684.
Karppinen, S, Liukkonen, K, Aura, AM, Forsell, P & Poutanen, K (2000) In vitro fermentation of polysacharides of rye, wheat and oat brans and inulin by human faecal bacteria. Journal of the Science of Food and Agriculture 80, 14691476.
Kleessen, B, Sykura, B, Zunft, HJ & Blaut, M (1997) Effects of inulin and lactose on faecal microflora, microbial activity and bowel habit in elderly constipated persons. American Journal of Clinical Nutrition 65, 13971402.
Kruse, HP, Kleessen, B & Blaut, M (1999) Effects of inulin on faecal bifidobacteria in human subjects. British Journal of Nutrition 82, 375382.
Le Blay, G, Michael, C, Blottiere, HM & Cherbut, C (1999) Prolonged intake of fructo-oligosaccharides induces a short–term elevation of lactic acid producing bacteria and a persistent increase in cecal butyrate in rats. Journal of Nutrition 129, 22312235.
Roberfroid, MB (2002) Functional foods: concepts and application to inulin and oligofructose. British Journal of Nutrition 87, S139S143, this issue.
Sghir, A, Chow, JM & Mackie, RI (1998) Continuous culture selection of bifidobacteria and lactobacilli from human faecal samples using fructooligosaccharide as selective substrate. Journal of Applied Microbiology 85, 769777.
Tannock, G (2002) Methodologies for quantification of faecal bacteria: application to prebiotic effects. British Journal of Nutrition 87, S199S201, this issue.
Tuohy, KM, Kolida, S, Lustenberger, A & Gibson, GR (2001) The prebiotic effects of biscuits containing partially hydrolyzed guar gum and fructooligosaccharides – a human volunteer study. British Journal of Nutrition 86, 341348.
Videla, S (1999) Deranged luminal pH homeostasis in experimental colitis can be restored by a prebiotic. Gastroenterology 116, A942.
Videla, S, Vilaseca, J, Garcia-Lafuente, A, Antolin, M, Crespo, E, Guarner, F & Malagelada, JR (1998) Dietary inulin prevents distal colitis induced by dextran sulfate sodium (DSS). Gastroenterology 114, A1110.
Wang, X & Gibson, GR (1993) Effects of the in vivo fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Journal of Applied Bacteriology 75, 373380.
Williams, CH, Witherly, SA & Buddington, RK (1994) Influence of dietary Neosugar on selected bacteria groups of the human fecal microbiota. Microbial Ecology in Health and Disease 7, 9197.
Young, J (1998) European market developments in prebiotic-and probiotic-containing foodstuffs. British Journal of Nutrition 80, S231S233.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed