Hostname: page-component-76fb5796d-25wd4 Total loading time: 0 Render date: 2024-04-29T06:45:52.864Z Has data issue: false hasContentIssue false

The prediction of total body water from bioelectrical impedance in patients with anorexia nervosa

Published online by Cambridge University Press:  09 March 2007

L. Scalfi
Affiliation:
Dipartimento di Scienze degli Alimenti, Facoltà di Agraria, Università Federico II, Napoli, Italy
G. Bedogni
Affiliation:
Dipartimento di Scienze Biomediche, Facoltà di Medicina e Chirurgia, Università di Modena, Via Campi 286, 41100, Modena, Italy
M. Marra
Affiliation:
Istituto di Medicina Interna e Malattie Dismetaboliche, Facoltà di Medicina e Chirurgia, Università Federico II, Napoli, Italy
G. Di Biase
Affiliation:
Istituto di Medicina Interna e Malattie Dismetaboliche, Facoltà di Medicina e Chirurgia, Università Federico II, Napoli, Italy
A. Caldara
Affiliation:
Istituto di Medicina Interna e Malattie Dismetaboliche, Facoltà di Medicina e Chirurgia, Università Federico II, Napoli, Italy
S. Severi
Affiliation:
Dipartimento di Scienze Biomediche, Facoltà di Medicina e Chirurgia, Università di Modena, Via Campi 286, 41100, Modena, Italy
F. Contaldo
Affiliation:
Istituto di Medicina Interna e Malattie Dismetaboliche, Facoltà di Medicina e Chirurgia, Università Federico II, Napoli, Italy
N. Battistini
Affiliation:
Dipartimento di Scienze Biomediche, Facoltà di Medicina e Chirurgia, Università di Modena, Via Campi 286, 41100, Modena, Italy
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Total body water (TBW) was measured by deuterium oxide (D2O) dilution and predicted from bioelectrical impedance (Z) in nineteen anorexic and twenty-seven control women. The equation of Kushner et al. (1992) based on the impedance index (ZI = height2/Z) gave biases of 0.9 (sd 2.5) and 0.8 (sd 2.5) litres in controls and patients respectively (NS, ANOVA). The ZI-based equation of Deurenberg et al. (1993) gave biases of 1.5 (sd 2.4) litres (NS) and 3.0 (sd 2.1) litres (P <0.001) in controls and patients respectively. Despite the fact that weight was the most powerful predictor of TBW on the study sample (n 46, r2 0.90, P < 0.0001, se of the estimate 1.6 litres, CV 5.7%), the formulas of Segal et al. (1991) and Kushner et al. (1992) based on the association of weight and ZI gave an inaccurate prediction of TBW in both control and anorexic subjects, with a bias ranging from -3.2 (sd 2.4) to 2.9 (sd 2.1) litres (P ≤0.001). Population-specific formulas based on ZI (n 46) gave a more accurate prediction of TBW by bioelectrical impedance analysis on the study subjects, with biases of -0.1 (sd 1.8) and 0.5 (sd 1.7) litres in controls and patients respectively (NS). However, the individual bias was sometimes high. It is concluded that bioelectrical impedance analysis can be used to predict TBW in anorexic women at a population level, but the predictions are less good than those based on body weight alone.

Type
Human and Clinical Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders, 4th ed. Washington, DC: American Psychiatric Association.Google Scholar
Battistini, N., Facchini, F., Bedogni, G., Severi, S., Fiori, G. & Pettener, D. (1995 a) The prediction of total body water and extracellular water from bioelectric impedance in a non-caucasian population from Central Asia. Annals of Human Biology 22, 315320.CrossRefGoogle Scholar
Battistini, N., Severi, S., Brambilla, P., Virgili, F., Manzoni, P., Beccaria, L. & Chiumello, G. (1995 b) Relative expansion of extracellular water in obese vs non obese children. Journal of Applied Physiology 79, 9496.CrossRefGoogle Scholar
Borghi, A., Bedogni, G., Rocchi, E., Severi, S., Farina, F. & Battistini, N. (1996) Multifrequency bioelectric impedance measurements for predicting body water compartments in patients with non-ascitic liver cirrhosis. British Journal of Nutrition 76, 325332.CrossRefGoogle ScholarPubMed
Dempsey, D. T., Crosby, L. O., Lusk, E., Oberlander, J. L., Pertschuk, M. J. & Mullen, J. L. (1984) Total body water and total body potassium in anorexia nervosa. American Journal of Clinical Nutrition 40, 260269.CrossRefGoogle ScholarPubMed
Deurenberg, P. (1994) International consensus conference on impedance in body composition. Age and Nutrition 5, 142145.Google Scholar
Deurenberg, P., Schouten, F. J. M., Andreoli, A. & De Lorenzo, A. (1993). Assessment of changes in extracellular water and total body water using multi-frequency bio-electrical impedance. In Human Body Composition. In Vivo Methods, Models and Assessment, pp. 129132 [Ellis, K.J. and Eastman, J. D., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Forbes, G. B. (1987) Human Body Composition. Growth, Aging, Nutrition and Activity. New York: Springer-Verlag.Google Scholar
Garner, D. M. (1993) Pathogenesis of anorexia nervosa. Lancet 341, 16311635.CrossRefGoogle ScholarPubMed
Goran, M. I., Kaskoun, M. C., Carpenter, W. H., Poehlman, E. T., Ravussin, E. & Fontvieille, A. M. (1993) Estimating body composition of young children by using bioelectrical resistance. Journal of Applied Physiology 75, 17761780.CrossRefGoogle ScholarPubMed
Hannan, W. J., Cowen, S., Freeman, C. P. & Shapiro, C. M. (1990) Evaluation of bioelectrical impedance analysis for body composition measurement in anorexia nervosa. Clinical Physics and Physiological Measurement 11, 209216.CrossRefGoogle ScholarPubMed
Hannan, W. J., Cowen, S. J., Freeman, C. P., Wrate, R. M. & Barton, J. (1993). Evaluation of dual-energy X-ray absorptiometry for the assessment of body composition in anorexic females. In Human Body Composition. In Vivo Methods, Models, and Assessment, pp. 169172 [Ellis, K.J. and Eastman, J. D., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Heitmann, B. L. (1994) Impedance: a valid method in assessment of body composition? European Journal of Clinical Nutrition 48, 228240.Google Scholar
Heymsfield, S. B. & Waki, M. (1991) Body composition in humans: advances in the development of multicompartment chemical models. Nutrition Reviews 49, 97108.CrossRefGoogle ScholarPubMed
Kushner, R. F. (1992) Bioelectric impedance analysis: a review of principles and applications. Journal of the American College of Nutrition 11, 199209.CrossRefGoogle Scholar
Kushner, R. F., Schoeller, D. A., Fjeld, C. R. & Danford, L. (1992). Is the impedance index (Ht2/R) significant in predicting total body water? American Journal of Clinical Nutrition 56, 835839.CrossRefGoogle ScholarPubMed
Lohman, T. G., Roche, A. F. & Martorell, R. (Eds.) (1988) Anthropometric Standardization Reference Manual. Champaign, IL: Human Kinetics Books.Google Scholar
Lukaski, H. C. (1990). Applications of bioelectric impedance analysis: a critical review. In In Vivo Body Composition Studies. Recent Advances, pp. 365374 [Yasamura, S., Harrison, J. E., McNeill, K. G., Woodhead, A. D., Dilmanian, F. A., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Lukaski, H. C. & Johnson, P. E. (1985) A simple inexpensive method of determining total body water using a tracer dose of deuterium oxide and infrared absorption of biological fluids. American Journal of Clinical Nutrition 41, 363370.CrossRefGoogle ScholarPubMed
Lukaski, H. C., Johnson, P. E., Bolonchuck, W. W. & Lykken, G. I. (1985) Assessment of fat-free mass using bioelectrical impedance measurements of the human body. American Journal of Clinical Nutrition 41, 810817.CrossRefGoogle ScholarPubMed
Norgan, N. G. (1995). The assessment of the body composition of populations. In Body Composition Techniques in Health and Disease, pp. 195221 [Davies, P.S. W. and Cole, T. J., editors]. Cambridge: Cambridge University Press.CrossRefGoogle Scholar
Russell, J., Allen, B., Mira, M., Vizzard, J., Stewart, P. & Beaumont, P. (1994 a) Total body nitrogen as a predictor of clinical status in anorexia nervosa. International Journal of Eating Disorders 15, 275278.3.0.CO;2-9>CrossRefGoogle ScholarPubMed
Russell, J. D., Mira, M., Allen, B. J., Stewart, P. M., Vizzard, J., Arthur, P. & Beaumont, P. J. (1994 b) Protein repletion and treatment in anorexia nervosa. American Journal of Clinical Nutrition 59, 98102.CrossRefGoogle ScholarPubMed
ScalfiL., L.,, Di Biase, G., Sapio, A., Coltorti, A. & Contaldo, F. (1993) Bioimpedance analysis and resting energy expenditure in undernourished and refed anorectic patients. European Journal of Clinical Nutrition 47, 6167.Google ScholarPubMed
Schoeller, D. A. (1996). Hydrometry. In Human Body Composition, pp. 2544 [Roche, A.F., Heymsfield, S. B. and Lohman, T. G., editors]. Champaign, IL: Human Kinetics.Google ScholarPubMed
Segal, K. R., Burastero, S., Chun, A., Coronel, P., Pierson, R. N. & Wang, J. (1991) Estimation of extracellular and total body water by multiple-frequency bioelectrical-impedance measurements. American Journal of Clinical Nutrition 54, 2629.CrossRefGoogle Scholar
Vaisman, N., Corey, M., Rossi, M. F., Goldberg, E. & Pencharz, P. (1988 a) Changes in body composition during refeeding of patients with anorexia nervosa. Journal of Pediatrics 113, 925929.CrossRefGoogle ScholarPubMed
Vaisman, N., Rossi, M. F., Goldberg, E., Dibden, L. J., Wykes, L. J. & Pencharz, P. B. (1988 b) Energy expenditure and body composition in patients with anorexia nervosa. Journal of Pediatrics 113, 919924.CrossRefGoogle ScholarPubMed