Skip to main content Accessibility help
×
Home

Prevalence and predictors of vitamin D deficiency in a nationally representative sample of adults participating in the 2011–2013 Australian Health Survey

  • Eva Malacova (a1) (a2), Peihua (Rachel) Cheang (a1), Eleanor Dunlop (a1), Jill L. Sherriff (a1), Robyn M. Lucas (a3) (a4), Robin M. Daly (a5), Caryl A. Nowson (a5) and Lucinda J. Black (a1)...

Abstract

Vitamin D deficiency is recognised as a public health problem globally, and a high prevalence of deficiency has previously been reported in Australia. This study details the prevalence of vitamin D deficiency in a nationally representative sample of Australian adults aged ≥25 years, using an internationally standardised method to measure serum 25-hydroxyvitamin D (25(OH)D) concentrations and identifies demographic and lifestyle factors associated with vitamin D deficiency. We used data from the 2011–2013 Australian Health Survey (n 5034 with complete information on potential predictors and serum 25(OH)D concentrations). Serum 25(OH)D concentrations were measured by a liquid chromatography-tandem MS that is certified to the reference measurement procedures developed by the National Institute of Standards and Technology, Ghent University and the US Centers for Disease Control and Prevention. Vitamin D deficiency and insufficiency were defined as serum 25(OH)D concentrations <50 nmol/l and 50 to <75 nmol/l, respectively. Overall, 20 % of participants (19 % men; 21 % women) were classified as vitamin D deficient, with a further 43 % classified as insufficient (45 % men; 42 % women). Independent predictors of vitamin D deficiency included being born in a country other than Australia or the main English-speaking countries, residing in southern (higher latitude) states of Australia, being assessed during winter or spring, being obese, smoking (women only), having low physical activity levels and not taking vitamin D or Ca supplements. Given our increasingly indoor lifestyles, there is a need to develop and promote strategies to maintain adequate vitamin D status through safe sun exposure and dietary approaches.

Copyright

Corresponding author

*Corresponding author: L. J. Black, email lucinda.black@curtin.edu.au

References

Hide All
1. Liu, X, Baylin, A & Levy, PD (2018) Vitamin D deficiency and insufficiency among US adults: prevalence, predictors and clinical implications. Br J Nutr 119, 928936.
2. Rockell, JE, Skeaff, CM, Williams, SM, et al. (2006) Serum 25-hydroxyvitamin D concentrations of New Zealanders aged 15 years and older. Osteoporos Int 17, 13821389.
3. Sarafin, K, Durazo-Arvizu, R, Tian, L, et al. (2015) Standardizing 25-hydroxyvitamin D values from the Canadian Health Measures Survey. Am J Clin Nutr 102, 10441050.
4. Cashman, KD, Dowling, KG, Škrabáková, Z, et al. (2016) Vitamin D deficiency in Europe: pandemic? Am J Clin Nutr 103, 10331044.
5. Black, LJ, Walton, J, Flynn, A, et al. (2015) Small increments in vitamin D intake by Irish adults over a decade show that strategic initiatives to fortify the food supply are needed. J Nutr 145, 969976.
6. Vatanparast, H, Calvo, MS, Green, TJ, et al. (2010) Despite mandatory fortification of staple foods, vitamin D intakes of Canadian children and adults are inadequate. J Steroid Biochem Mol Biol 121, 301303.
7. Bailey, RL, Dodd, KW, Goldman, JA, et al. (2010) Estimation of total usual calcium and vitamin D intakes in the United States. J Nutr 140, 817822.
8. Scientific Advisory Committee on Nutrition (2016) Vitamin D and Health. London: UK Government. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/537616/SACN_Vitamin_D_and_Health_report.pdf (accessed February 2019).
9. Daly, RM, Gagnon, C, ZX, Lu, et al. (2012) Prevalence of vitamin D deficiency and its determinants in Australian adults aged 25 years and older: a national, population-based study. Clin Endocrinol 77, 2635.
10. Sempos, CT, Vesper, HW, Phinney, KW, et al. (2012) Vitamin D status as an international issue: national surveys and the problem of standardization. Scand J Clin Lab Invest 243, 3240.
11. Mineva, EM, Schleicher, RL, Chaudhary-Webb, M, et al. (2015) A candidate reference measurement procedure for quantifying serum concentrations of 25-hydroxyvitamin D(3) and 25-hydroxyvitamin D(2) using isotope-dilution liquid chromatography-tandem mass spectrometry. Anal Bioanal Chem 407, 56155624.
12. Lai, JKC, Lucas, RM, Banks, E, et al. (2012) Variability in vitamin D assays impairs clinical assessment of vitamin D status. Intern Med J 42, 4350.
13. Black, LJ, Anderson, D, Clarke, MW, et al. (2015) Analytical bias in the measurement of serum 25-hydroxyvitamin D concentrations impairs assessment of vitamin D status in clinical and research settings. PLOS ONE 10, e0135478.
14. Binkley, N, Krueger, DC, Morgan, S, et al. (2010) Current status of clinical 25-hydroxyvitamin D measurement: an assessment of between-laboratory agreement. Clin Chim Acta 411, 19761982.
15. Lucas, R & Neale, R (2014) What is the optimal level of vitamin D?: Separating the evidence from the rhetoric. Aust Fam Physician 43, 119122.
16. Australian Bureau of Statistics (2014) Australian Health Survey: biomedical results for nutrients. http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/4364.0.55.006main+features12011-12 (accessed March 2018).
17. Australian Bureau of Statistics (2013) Australian Health Survey: users’ guide, 2011–2013. http://www.abs.gov.au/ausstats/abs@.nsf/mf/4363.0.55.001 (accessed March 2018).
18. Australian Bureau of Statistics (2013) Australian Health Survey, National Health Survey, 2011–13, expanded confidentialised unit record file (CURF): ABS DataLab. Findings based on use of ABS microdata. http://www.abs.gov.au/ausstats/abs@.nsf/mf/4363.0.55.001 (accessed March 2018).
19. Holick, MF, Binkley, NC, Bischoff-Ferrari, HA, et al. (2011) Evaluation, treatment, and prevention of vitamin D deficiency: an endocrine society clinical practice guideline. J Clin Endocrinol Metab 96, 19111930.
20. World Health Organization (2016) Obesity and overweight. http://www.who.int/mediacentre/factsheets/fs311/en/ (accessed March 2018).
21. Australian Bureau of Statistics (2017) Census: 2016 data in pictures. http://www.censusdata.abs.gov.au/CensusOutput/copsub2016.nsf/All%20docs%20by%20catNo/Data-in-pictures/$FILE/australiaER.html (accessed February 2019).
22. Centers for Disease Control and Prevention (2009) National Health and Nutrition Examination Survey 2005–2006: documentation, codebook, and frequencies vitamin D. https://www.cdc.gov/nchs/data/nhanes/nhanes_05_06/vid_d.pdf (accessed June 2018).
23. Looker, AC, Pfeiffer, CM, Lacher, DA, et al. (2008) Serum 25-hydroxyvitamin D status of the US population: 1988–1994 compared with 2000–2004. Am J Clin Nutr 88, 15191527.
24. Schleicher, RL, Sternberg, MR, Lacher, DA, et al. (2016) The vitamin D status of the US population from 1988 to 2010 using standardized serum concentrations of 25-hydroxyvitamin D shows recent modest increases. Am J Clin Nutr 104, 454461.
25. Cashman, KD, Kiely, M, Kinsella, M, et al. (2013) Evaluation of vitamin D standardization program protocols for standardizing serum 25-hydroxyvitamin D data: a case study of the program’s potential for national nutrition and health surveys. Am J Clin Nutr 97, 12351242.
26. Holick, MF (2004) Sunlight and vitamin D for bone health and prevention of autoimmune diseases, cancers, and cardiovascular disease. Am J Clin Nutr 80, Suppl., 1678S1688S.
27. Drincic, AT, Armas, LA, Van Diest, EE, et al. (2012) Volumetric dilution, rather than sequestration best explains the low vitamin D status of obesity. Obesity (Silver Spring) 20, 14441448.
28. Holick, MF (2004) Vitamin D: importance in the prevention of cancers, type 1 diabetes, heart disease, and osteoporosis. Am J Clin Nutr 79, 362371.
29. Kimlin, MG (2008) Geographic location and vitamin D synthesis. Mol Aspects Med 29, 453461.
30. Munns, CF, Simm, PJ, Rodda, CP, et al. (2012) Incidence of vitamin D deficiency rickets among Australian children: an Australian Paediatric Surveillance Unit Study. Med J Aust 196, 466468.
31. Australian Bureau of Statistics (2017) Census: aboriginal and Torres Strait Islander population. http://www.abs.gov.au/ausstats/abs@.nsf/MediaRealesesByCatalogue/02D50FAA9987D6B7CA25814800087E03?OpenDocument. (accessed February 2019)
32. Australian Institute of Family Studies (2018) Map of Australia showing areas of varying geographic remoteness. https://aifs.gov.au/publications/families-regional-rural-and-remote-australia/figure1 (accessed February 2019).
33. Australian Bureau of Statistics (2014) 4727.0.55.003 – Australian aboriginal and Torres Strait Islander Health Survey: biomedical results, 2012–13: vitamin D. http://www.abs.gov.au/ausstats/abs@.nsf/Lookup/by%20Subject/4727.0.55.003~2012-13~Main%20Features~Vitamin%20D~133 (accessed February 2019).
34. Black, L, Jacoby, P, Nowson, C, et al. (2016) Predictors of vitamin D-containing supplement use in the Australian population and associations between dose and serum 25-hydroxyvitamin D concentrations. Nutrients 8, E356.
35. Kantor, ED, Rehm, CD, Du, M, et al. (2016) Trends in dietary supplement use among US adults from 1999–2012. JAMA 316, 14641474.
36. Koch, S, Pettigrew, S, Minto, C, et al. (2017) Trends in sun-protection behaviour in Australian adults 2007–2012. Australas J Dermatol 58, 111116.
37. Mealing, NM, Banks, E, Jorm, LR, et al. (2010) Investigation of relative risk estimates from studies of the same population with contrasting response rates and designs. BMC Med Res Methodol 10, 26.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed