Skip to main content Accessibility help
×
×
Home

Principal components analysis of diet and alternatives for identifying the combination of foods that are associated with the risk of disease: a simulation study

  • Ioannis Bakolis (a1), Peter Burney (a2) and Richard Hooper (a3)
Abstract

Dietary patterns derived empirically using principal components analysis (PCA) are widely employed for investigating diet–disease relationships. In the present study, we investigated whether PCA performed better at identifying such associations than an analysis of each food on a FFQ separately, referred to here as an exhaustive single food analysis (ESFA). Data on diet and disease were simulated using real FFQ data and by assuming a number of food intakes in combination that were associated with the risk of disease. In each simulation, ESFA and PCA were employed to identify the combinations of foods that are associated with the risk of disease using logistic regression, allowing for multiple testing and adjusting for energy intake. ESFA was also separately adjusted for principal components of diet, foods that were significant in the unadjusted ESFA and propensity scores. For each method, we investigated the power with which an association between diet and disease could be identified, and the power and false discovery rate (FDR) for identifying the specific combination of food intakes. In some scenarios, ESFA had greater power to detect a diet–disease association than PCA. ESFA also typically had a greater power and a lower FDR for identifying the combinations of food intakes that are associated with the risk of disease. The FDR of both methods increased with increasing sample size, but when ESFA was adjusted for foods that were significant in the unadjusted ESFA, FDR were controlled at the desired level. These results question the widespread use of PCA in nutritional epidemiology. The adjusted ESFA identifies the combinations of foods that are causally linked to the risk of disease with low FDR and surprisingly good power.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Principal components analysis of diet and alternatives for identifying the combination of foods that are associated with the risk of disease: a simulation study
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Principal components analysis of diet and alternatives for identifying the combination of foods that are associated with the risk of disease: a simulation study
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Principal components analysis of diet and alternatives for identifying the combination of foods that are associated with the risk of disease: a simulation study
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: I. Bakolis, email i.bakolis@imperial.ac.uk
References
Hide All
1 Slattery, ML, Boucher, KM, Caan, BJ, et al. (1998) Eating patterns and risk of colon cancer. Am J Epidemiol 148, 416.
2 Hu, FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13, 39.
3 Kant, AK (2004) Dietary patterns and health outcomes. J Am Diet Assoc 104, 615635.
4 Newby, PK & Tucker, KL (2004) Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev 62, 177203.
5 Naska, A, Fouskakis, D, Oikonomou, E, et al. (2006) Dietary patterns and their socio-demographic determinants in 10 European countries: data from the DAFNE databank. Eur J Clin Nutr 60, 181190.
6 Knudsen, VK, Orozova-Bekkevold, IM, Mikkelsen, TB, et al. (2008) Major dietary patterns in pregnancy and fetal growth. Eur J Clin Nutr 62, 463470.
7 Northstone, K & Emmett, P (2005) Multivariate analysis of diet in children at four and seven years of age and associations with socio-demographic characteristics. Eur J Clin Nutr 59, 751760.
8 Iqbal, R, Anand, S, Ounpuu, S, et al. (2008) Dietary patterns and the risk of acute myocardial infarction in 52 countries: results of the INTERHEART study. Circulation 118, 19291937.
9 Cottet, V, Touvier, M, Fournier, A, et al. (2009) Postmenopausal breast cancer risk and dietary patterns in the E3N-EPIC prospective cohort study. Am J Epidemiol 170, 12571267.
10 Bertuccio, P, Rosato, V, Andreano, A, et al. (2013) Dietary patterns and gastric cancer risk: a systematic review and meta-analysis. Ann Oncol 24, 14501458.
11 Shaheen, SO, Newson, RB, Rayman, MP, et al. (2007) Randomised, double blind, placebo-controlled trial of selenium supplementation in adult asthma. Thorax 62, 483490.
12 Greenberg, ER, Baron, JA, Tosteson, TD, et al. (1994) A clinical trial of antioxidant vitamins to prevent colorectal adenoma. Polyp Prevention Study Group. N Engl J Med 331, 141147.
13 Schatzkin, A, Lanza, E, Corle, D, et al. (2000) Lack of effect of a low-fat, high-fiber diet on the recurrence of colorectal adenomas. Polyp Prevention Trial Study Group. N Engl J Med 342, 11491155.
14 Hennekens, CH, Buring, JE, Manson, JE, et al. (1996) Lack of effect of long-term supplementation with beta carotene on the incidence of malignant neoplasms and cardiovascular disease. N Engl J Med 334, 11451149.
15 Hu, FB, Rimm, EB, Stampfer, MJ, et al. (2000) Prospective study of major dietary patterns and risk of coronary heart disease in men. Am J Clin Nutr 72, 912921.
16 Fung, TT, Willett, WC, Stampfer, MJ, et al. (2001) Dietary patterns and the risk of coronary heart disease in women. Arch Intern Med 161, 18571862.
17 Wu, K, Hu, FB, Fuchs, C, et al. (2004) Dietary patterns and risk of colon cancer and adenoma in a cohort of men (United States). Cancer Causes Control 15, 853862.
18 Fung, T, Hu, FB, Fuchs, C, et al. (2003) Major dietary patterns and the risk of colorectal cancer in women. Arch Intern Med 163, 309314.
19 Varraso, R, Fung, TT, Barr, RG, et al. (2007) Prospective study of dietary patterns and chronic obstructive pulmonary disease among US women. Am J Clin Nutr 86, 488495.
20 Varraso, R, Fung, TT, Hu, FB, et al. (2007) Prospective study of dietary patterns and chronic obstructive pulmonary disease among US men. Thorax 62, 786791.
21 Randall, E, Marshall, JR, Graham, S, et al. (1990) Patterns in food use and their associations with nutrient intakes. Am J Clin Nutr 52, 739745.
22 Jacques, PF & Tucker, KL (2001) Are dietary patterns useful for understanding the role of diet in chronic disease? Am J Clin Nutr 73, 12.
23 Newby, PK, Weismayer, C, Akesson, A, et al. (2006) Longitudinal changes in food patterns predict changes in weight and body mass index and the effects are greatest in obese women. J Nutr 136, 25802587.
24 Slattery, ML (2008) Defining dietary consumption: is the sum greater than its parts? Am J Clin Nutr 88, 1415.
25 Shaheen, SO, Sterne, JA, Thompson, RL, et al. (2001) Dietary antioxidants and asthma in adults: population-based case–control study. Am J Respir Crit Care Med 164, 18231828.
26 Hooper, R, Heinrich, J, Omenaas, E, et al. (2010) Dietary patterns and risk of asthma: results from three countries in European Community Respiratory Health Survey-H. Br J Nutr 103, 13541365.
27 Paul, AA, Southgate, DA & Buss, DH (1986) McCance and Widdowson's ‘The composition of foods’: supplementary information and review of new compositional data. Hum Nutr Appl Nutr 40, 287299.
28 Fewell, Z, Davey Smith, G & Sterne, JA (2007) The impact of residual and unmeasured confounding in epidemiologic studies: a simulation study. Am J Epidemiol 166, 646655.
29 Peduzzi, P, Concato, J, Kemper, E, et al. (1996) A simulation study of the number of events per variable in logistic regression analysis. J Clin Epidemiol 49, 13731379.
30 Laird, NM & SpringerLink, (2011) The Fundamentals of Modern Statistical Genetics. New York, NY: Springer Science+Business Media, LLC. http://dx.doi.org/10.1007/978-1-4419-7338-2.
31 Willett, W (1998) Nutritional Epidemiology, 2nd ed. Oxford: Oxford University Press.
32 Jakes, RW, Day, NE, Luben, R, et al. (2004) Adjusting for energy intake – what measure to use in nutritional epidemiological studies? Int J Epidemiol 33, 13821386.
33 Imamura, F, Lichtenstein, AH, Dallal, GE, et al. (2009) Confounding by dietary patterns of the inverse association between alcohol consumption and type 2 diabetes risk. Am J Epidemiol 170, 3745.
34 Benjamini, Y & Hochberg, Y (1995) Controlling the false discovery rate: a practical and powerful approach to multiple testing. J R Stat Soc: Ser B (Methodol) 57, 289300.
35 Fan, J & Lv, J (2008) Sure independence screening for ultrahigh dimensional feature space. J R Stat Soc: Ser B (Methodol) 70, 849911.
36 Imai, Kosuke & van Dyk, David A (2004) Causal inference with general treatment regime: generalizing the propensity score. 99, 854866.
37 Sturmer, T, Joshi, M, Glynn, RJ, et al. (2006) A review of the application of propensity score methods yielded increasing use, advantages in specific settings, but not substantially different estimates compared with conventional multivariable methods. J Clin Epidemiol 59, 437447.
38 Ender PB (2002) powerlog: command to perform logistic regression power analysis. http://www.ats.ucla.edu/stat/stata/ado/analysis/.
39 Miller, RG (1981) Simultaneous Statistical Inference, 2nd ed. Springer: Verlag.
40 Shaheen, SO, Jameson, KA, Syddall, HE, et al. (2010) The relationship of dietary patterns with adult lung function and COPD. Eur Respir J 36, 277284.
41 Benjamini, Y & Yekutieli, D (2005) Quantitative trait loci analysis using the false discovery rate. Genetics 171, 783790.
42 Ioannidis, JP (2005) Why most published research findings are false. PLoS Med 2, e124.
43 Messina, M, Lampe, JW, Birt, DF, et al. (2001) Reductionism and the narrowing nutrition perspective: time for reevaluation and emphasis on food synergy. J Am Diet Assoc 101, 14161419.
44 Sacks, FM, Obarzanek, E, Windhauser, MM, et al. (1995) Rationale and design of the Dietary Approaches to Stop Hypertension trial (DASH). A multicenter controlled-feeding study of dietary patterns to lower blood pressure. Ann Epidemiol 5, 108118.
45 Halliwell, B (1996) Antioxidants in human health and disease. Annu Rev Nutr 16, 3350.
46 Edefonti, V, Randi, G, La Vecchia, C, et al. (2009) Dietary patterns and breast cancer: a review with focus on methodological issues. Nutr Rev 67, 297314.
47 Agurs-Collins, T, Rosenberg, L, Makambi, K, et al. (2009) Dietary patterns and breast cancer risk in women participating in the Black Women's Health Study. Am J Clin Nutr 90, 621628.
48 Robinson, S, Syddall, H, Jameson, K, et al. (2009) Current patterns of diet in community-dwelling older men and women: results from the Hertfordshire Cohort Study. Age Ageing 38, 594599.
49 Fung, TT, Rimm, EB, Spiegelman, D, et al. (2001) Association between dietary patterns and plasma biomarkers of obesity and cardiovascular disease risk. Am J Clin Nutr 73, 6167.
50 Perrin, AE, Dallongeville, J, Ducimetiere, P, et al. (2005) Interactions between traditional regional determinants and socio-economic status on dietary patterns in a sample of French men. Br J Nutr 93, 109114.
51 Raberg Kjollesdal, MK, Holmboe-Ottesen, G & Wandel, M (2010) Associations between food patterns, socioeconomic position and working situation among adult, working women and men in Oslo. Eur J Clin Nutr 64, 11501157.
52 Lopez-Garcia, E, Schulze, MB, Fung, TT, et al. (2004) Major dietary patterns are related to plasma concentrations of markers of inflammation and endothelial dysfunction. Am J Clin Nutr 80, 10291035.
53 Heidemann, C, Schulze, MB, Franco, OH, et al. (2008) Dietary patterns and risk of mortality from cardiovascular disease, cancer, and all causes in a prospective cohort of women. Circulation 118, 230237.
54 Jolliffe, IT (2010) Principal Component Analysis, 2nd ed. New York/London: Springer.
55 Jombart, T, Devillard, S & Balloux, F (2010) Discriminant analysis of principal components: a new method for the analysis of genetically structured populations. BMC Genetics 11, 94.
56 Reedy, J, Wirfalt, E, Flood, A, et al. (2010) Comparing 3 dietary pattern methods – cluster analysis, factor analysis, and index analysis – with colorectal cancer risk: The NIH-AARP Diet and Health Study. Am J Epidemiol 171, 479487.
57 Hoffmann, K, Schulze, MB, Schienkiewitz, A, et al. (2004) Application of a new statistical method to derive dietary patterns in nutritional epidemiology. Am J Epidemiol 159, 935944.
58 Bartholomew, DJ, Steele, F, Moustaki, I, et al. (2002) The Analysis and Interpretation of Multivariate Data for Social Scientists. Boca Raton, FL: Chapman & Hall/CRC Press.
59 Schulze, MB & Hoffmann, K (2006) Methodological approaches to study dietary patterns in relation to risk of coronary heart disease and stroke. Br J Nutr 95, 860869.
60 Fan, J & Lv, J (2010) A selective overview of variable selection in high dimensional feature space. Stat Sin 20, 101148.
61 Jacobs, DR Jr, Gross, MD, Tapseli, LC, et al. (2009) Food synergy: an operational concept for understanding nutrition. Am J Clin Nutr 89, 1543S1548S.
62 Mann, J & Aune, D (2010) Can specific fruits and vegetables prevent diabetes? BMJ 341, c4395.
63 McCann, SE, Weiner, J, Graham, S, et al. (2001) Is principal components analysis necessary to characterise dietary behaviour in studies of diet and disease? Public Health Nutr 4, 903908.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed