Skip to main content Accessibility help
×
×
Home

Prospective associations between socio-economic status and dietary patterns in European children: the Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants (IDEFICS) Study

  • Juan Miguel Fernández-Alvira (a1) (a2), Claudia Börnhorst (a2), Karin Bammann (a3), Wencke Gwozdz (a4), Vittorio Krogh (a5), Antje Hebestreit (a2), Gianvincenzo Barba (a6), Lucia Reisch (a4), Gabriele Eiben (a7), Iris Iglesia (a1), Tomas Veidebaum (a8), Yannis A. Kourides (a9), Eva Kovacs (a10), Inge Huybrechts (a11) (a12), Iris Pigeot (a2) (a13) and Luis A. Moreno (a1)...

Abstract

Exploring changes in children's diet over time and the relationship between these changes and socio-economic status (SES) may help to understand the impact of social inequalities on dietary patterns. The aim of the present study was to describe dietary patterns by applying a cluster analysis to 9301 children participating in the baseline (2–9 years old) and follow-up (4–11 years old) surveys of the Identification and Prevention of Dietary- and Lifestyle-induced Health Effects in Children and Infants Study, and to describe the cluster memberships of these children over time and their association with SES. We applied the K-means clustering algorithm based on the similarities between the relative frequencies of consumption of forty-two food items. The following three consistent clusters were obtained at baseline and follow-up: processed (higher frequency of consumption of snacks and fast food); sweet (higher frequency of consumption of sweet foods and sweetened drinks); healthy (higher frequency of consumption of fruits, vegetables and wholemeal products). Children with higher-educated mothers and fathers and the highest household income were more likely to be allocated to the healthy cluster at baseline and follow-up and less likely to be allocated to the sweet cluster. Migrants were more likely to be allocated to the processed cluster at baseline and follow-up. Applying the cluster analysis to derive dietary patterns at the two time points allowed us to identify groups of children from a lower socio-economic background presenting persistently unhealthier dietary profiles. This finding reflects the need for healthy eating interventions specifically targeting children from lower socio-economic backgrounds.

Copyright

Corresponding author

* Corresponding author: J. M. Fernández-Alvira, fax +34 876 55 40 9, email juanfdez@unizar.es

References

Hide All
1 Marmot, M (2005) Social determinants of health inequalities. Lancet 365, 10991104.
2 Mackenbach, JP, Stirbu, I, Roskam, AJ, et al. (2008) Socioeconomic inequalities in health in 22 European countries. N Engl J Med 358, 24682481.
3 Nicklas, TA, Baranowski, T, Cullen, KW, et al. (2001) Eating patterns, dietary quality and obesity. J Am Coll Nutr 20, 599608.
4 Darmon, N & Drewnowski, A (2008) Does social class predict diet quality? Am J Clin Nutr 87, 11071117.
5 Van der Horst, K, Oenema, A, Ferreira, I, et al. (2007) A systematic review of environmental correlates of obesity-related dietary behaviors in youth. Health Educ Res 22, 203226.
6 Sausenthaler, S, Kompauer, I, Mielck, A, et al. (2007) Impact of parental education and income inequality on children's food intake. Public Health Nutr 10, 2433.
7 Richter, A, Heidemann, C, Schulze, MB, et al. (2012) Dietary patterns of adolescents in Germany – associations with nutrient intake and other health related lifestyle characteristics. BMC Pediatr 12, 35.
8 Craig, LC, McNeill, G, Macdiarmid, JI, et al. (2010) Dietary patterns of school-age children in Scotland: association with socio-economic indicators, physical activity and obesity. Br J Nutr 103, 319334.
9 Moreira, P, Santos, S, Padrao, P, et al. (2010) Food patterns according to sociodemographics, physical activity, sleeping and obesity in Portuguese children. Int J Environ Res Public Health 7, 11211138.
10 Hu, FB (2002) Dietary pattern analysis: a new direction in nutritional epidemiology. Curr Opin Lipidol 13, 39.
11 Pryer, JA & Rogers, S (2009) Dietary patterns among a national sample of British children aged 1 1/2–4 1/2 years. Public Health Nutr 12, 957966.
12 Okubo, H, Miyake, Y, Sasaki, S, et al. (2014) Dietary patterns in infancy and their associations with maternal socio-economic and lifestyle factors among 758 Japanese mother–child pairs: the Osaka Maternal and Child Health Study. Matern Child Nutr 10, 213225.
13 Smith, AD, Emmett, PM, Newby, PK, et al. (2011) A comparison of dietary patterns derived by cluster and principal components analysis in a UK cohort of children. Eur J Clin Nutr 65, 11021109.
14 Northstone, K, Smith, AD, Newby, PK, et al. (2013) Longitudinal comparisons of dietary patterns derived by cluster analysis in 7- to 13-year-old children. Br J Nutr 109, 20502058.
15 Ahrens, W, Bammann, K, Siani, A, et al. (2011) The IDEFICS cohort: design, characteristics and participation in the baseline survey. Int J Obes (Lond) 35, Suppl. 1, S3S15.
16 Bammann, K, Peplies, J, Sjöström, M, et al. (2006) Assessment of diet, physical activity and biological, social and environmental factors in a multi-centre European project on diet- and lifestyle-related disorders in children (IDEFICS). J Public Health 14, 279289.
17 Bammann, K, Gwozdz, W, Lanfer, A, et al. (2013) Socioeconomic factors and childhood overweight in Europe: results from the multi-centre IDEFICS study. Pediatr Obes 8, 112.
18 Huybrechts, I, Bornhorst, C, Pala, V, et al. (2011) Evaluation of the Children's Eating Habits Questionnaire used in the IDEFICS study by relating urinary calcium and potassium to milk consumption frequencies among European children. Int J Obes 35, Suppl. 1, S69S78.
19 Lanfer, A, Hebestreit, A, Ahrens, W, et al. (2011) Reproducibility of food consumption frequencies derived from the Children's Eating Habits Questionnaire used in the IDEFICS study. Int J Obes 35, Suppl. 1, S61S68.
20 Pala, V, Lissner, L, Hebestreit, A, et al. (2013) Dietary patterns and longitudinal change in body mass in European children: a follow-up study on the IDEFICS multicenter cohort. Eur J Clin Nutr 67, 10421049.
21 Graham, JW (2009) Missing data analysis: making it work in the real world. Annu Rev Psychol 60, 549576.
22 UNESCO (2006) ISCED 1997. International Standard Classification of Education [UNE SaCOIfS, , editor]. Montreal: UNESCO.
23 OECD (2008) Growing Unequal? Income Distribution and Poverty in OECD Countries. Paris: OECD.
24 Stomfai, S, Ahrens, W, Bammann, K, et al. (2011) Intra- and inter-observer reliability in anthropometric measurements in children. Int J Obes 35, Suppl. 1, S45S51.
25 Cole, TJ & Lobstein, T (2012) Extended international (IOTF) body mass index cut-offs for thinness, overweight and obesity. Pediatr Obes 7, 284294.
26 Newby, PK & Tucker, KL (2004) Empirically derived eating patterns using factor or cluster analysis: a review. Nutr Rev 62, 177203.
27 Everitt, B, Landau, S, Leese, M, et al. (2011) Cluster Analysis, 5th ed. London: Wiley.
28 Shang, X, Li, Y, Liu, A, et al. (2012) Dietary pattern and its association with the prevalence of obesity and related cardiometabolic risk factors among Chinese children. PLOS ONE 7, e43183.
29 Knol, LL, Haughton, B & Fitzhugh, EC (2005) Dietary patterns of young, low-income US children. J Am Diet Assoc 105, 17651773.
30 Rodriguez-Ramirez, S, Mundo-Rosas, V, Garcia-Guerra, A, et al. (2011) Dietary patterns are associated with overweight and obesity in Mexican school-age children. Arch Latinoam Nutr 61, 270278.
31 Rasanen, M, Lehtinen, JC, Niinikoski, H, et al. (2002) Dietary patterns and nutrient intakes of 7-year-old children taking part in an atherosclerosis prevention project in Finland. J Am Diet Assoc 102, 518524.
32 Campain, AC, Morgan, MV, Evans, RW, et al. (2003) Sugar-starch combinations in food and the relationship to dental caries in low-risk adolescents. Eur J Oral Sci 111, 316325.
33 Kim, JA, Kim, SM, Lee, JS, et al. (2007) Dietary patterns and the metabolic syndrome in Korean adolescents: 2001 Korean National Health and Nutrition Survey. Diabetes Care 30, 19041905.
34 Reedy, J, Wirfalt, E, Flood, A, et al. (2010) Comparing 3 dietary pattern methods – cluster analysis, factor analysis, and index analysis – with colorectal cancer risk: The NIH-AARP Diet and Health Study. Am J Epidemiol 171, 479487.
35 Crozier, SR, Robinson, SM, Borland, SE, et al. (2006) Dietary patterns in the Southampton Women's Survey. Eur J Clin Nutr 60, 13911399.
36 Lee, S & Reicks, M (2003) Environmental and behavioral factors are associated with the calcium intake of low-income adolescent girls. J Am Diet Assoc 103, 15261529.
37 Hebestreit, A, Keimer, KM, Hassel, H, et al. (2010) What do children understand? Communicating health behavior in a European multicenter study. J Public Health 18, 391401.
38 Fernandez-Alvira, JM, Mouratidou, T, Bammann, K, et al. (2013) Parental education and frequency of food consumption in European children: the IDEFICS study. Public Health Nutr 16, 487498.
39 Northstone, K & Emmett, P (2005) Multivariate analysis of diet in children at four and seven years of age and associations with socio-demographic characteristics. Eur J Clin Nutr 59, 751760.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Fernández-Alvira Supplementary Material 1
Supplementary Material

 Word (31 KB)
31 KB
WORD
Supplementary materials

Fernández-Alvira Supplementary Material 2
Supplementary Material

 Word (50 KB)
50 KB
WORD
Supplementary materials

Fernández-Alvira Supplementary Material 3
Supplementary Material

 Word (30 KB)
30 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed