Skip to main content

Protein ingestion preserves proteasome activity during intense aseptic inflammation and facilitates skeletal muscle recovery in humans

  • Dimitrios Draganidis (a1), Niki Chondrogianni (a2), Athanasios Chatzinikolaou (a3), Gerasimos Terzis (a4), Leonidas G. Karagounis (a1) (a5), Apostolos Sovatzidis (a6), Alexandra Avloniti (a3), Maria Lefaki (a2), Maria Protopapa (a3), Chariklia K. Deli (a1), Konstantinos Papanikolaou (a1), Athanasios Z. Jamurtas (a1) (a7) and Ioannis G. Fatouros (a1)...

The ubiquitin–proteasome system (UPS) is the main cellular proteolytic system responsible for the degradation of normal and abnormal (e.g. oxidised) proteins. Under catabolic conditions characterised by chronic inflammation, the UPS is activated resulting in proteolysis, muscle wasting and impaired muscle function. Milk proteins provide sulphur-containing amino acid and have been proposed to affect muscle inflammation. However, the response of the UPS to aseptic inflammation and protein supplementation is largely unknown. The aim of this study was to investigate how milk protein supplementation affects UPS activity and skeletal muscle function under conditions of aseptic injury induced by intense, eccentric exercise. In a double-blind, cross-over, repeated measures design, eleven men received either placebo (PLA) or milk protein concentrate (PRO, 4×20 g on exercise day and 20 g/d for the following 8 days), following an acute bout of eccentric exercise (twenty sets of fifteen eccentric contractions at 30°/s) on an isokinetic dynamometer. In each trial, muscle biopsies were obtained from the vastus lateralis muscle at baseline, as well as at 2 and 8 d post exercise, whereas blood samples were collected before exercise and at 6 h, 1 d, 2 d and 8 d post exercise. Muscle strength and soreness were assessed before exercise, 6 h post exercise and then daily for 8 consecutive days. PRO preserved chymotrypsin-like activity and attenuated the decrease of strength, facilitating its recovery. PRO also prevented the increase of NF-κB phosphorylation and HSP70 expression throughout recovery. We conclude that milk PRO supplementation following exercise-induced muscle trauma preserves proteasome activity and attenuates strength decline during the pro-inflammatory phase.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Protein ingestion preserves proteasome activity during intense aseptic inflammation and facilitates skeletal muscle recovery in humans
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Protein ingestion preserves proteasome activity during intense aseptic inflammation and facilitates skeletal muscle recovery in humans
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Protein ingestion preserves proteasome activity during intense aseptic inflammation and facilitates skeletal muscle recovery in humans
      Available formats
Corresponding author
* Corresponding author: I. G. Fatouros, fax +30 2431047042, email
Hide All
1. Peake, J, Nosaka, K & Suzuki, K (2005) Characterization of inflammatory responses to eccentric exercise in humans. Exerc Immunol Rev 11, 6485.
2. Fehrenbach, E & Schneider, ME (2006) Trauma-induced systemic inflammatory response versus exercise-induced immunomodulatory effects. Sports Med 36, 373384.
3. Nikolaidis, MG, Jamurtas, AZ, Paschalis, V, et al. (2008) The effect of muscle-damaging exercise on blood and skeletal muscle oxidative stress: magnitude and time-course considerations. Sports Med 38, 579606.
4. Powers, SK, Ji, LL, Kavazis, AN, et al. (2011) Reactive oxygen species: impact on skeletal muscle. Compr Physiol 1, 941969.
5. Ji, LL (2007) Antioxidant signaling in skeletal muscle: a brief review. Exp Gerontol 42, 582593.
6. Aoi, W, Naito, Y, Takanami, Y, et al. (2004) Oxidative stress and delayed-onset muscle damage after exercise. Free Rad Biol Med 37, 480487.
7. Palacio, JR, Markert, UR & Martinez, P (2011) Anti-inflammatory properties of N-acetylcysteine on lipopolysaccharide-activated macrophages. Inflamma Res 60, 695704.
8. Michailidis, Y, Karagounis, LG, Terzis, G, et al. (2013) Thiol-based antioxidant supplementation alters human skeletal muscle signaling and attenuates its inflammatory response and recovery after intense eccentric exercise. Am J Clin Nutr 98, 233245.
9. Powers, SK, Morton, AB, Ahn, B, et al. (2016) Redox control of skeletal muscle atrophy. Free Radic Biol Med 98, 208217.
10. Olaso-Gonzalez, G, Ferrando, B, Derbre, F, et al. (2014) Redox regulation of E3 ubiquitin ligases and their role in skeletal muscle atrophy. Free Radic Biol Med 75, Suppl. 1, S43S44.
11. Schiaffino, S, Dyar, KA, Ciciliot, S, et al. (2013) Mechanisms regulating skeletal muscle growth and atrophy. FEBS J 280, 42944314.
12. Sandri, M (2013) Protein breakdown in muscle wasting: role of autophagy-lysosome and ubiquitin-proteasome. Int J Biochem Cell Biol 45, 21212129.
13. Jung, T & Grune, T (2008) The proteasome and its role in the degradation of oxidized proteins. IUBMB Life 60, 743752.
14. Chondrogianni, N, Petropoulos, I, Grimm, S, et al. (2014) Protein damage, repair and proteolysis. Mol Aspects Med 35, 171.
15. Li, H, Malhotra, S & Kumar, A (2008) Nuclear factor-kappa B signaling in skeletal muscle atrophy. J Mol Med (Berl) 86, 11131126.
16. Puig-Vilanova, E, Rodriguez, DA, Lloreta, J, et al. (2015) Oxidative stress, redox signaling pathways, and autophagy in cachectic muscles of male patients with advanced COPD and lung cancer. Free Radic Biol Med 79, 91108.
17. Bell, RA, Al-Khalaf, M & Megeney, LA (2016) The beneficial role of proteolysis in skeletal muscle growth and stress adaptation. Skelet Muscle 6, 16.
18. Taillandier, D, Combaret, L, Pouch, MN, et al. (2004) The role of ubiquitin-proteasome-dependent proteolysis in the remodelling of skeletal muscle. Proc Nutr Soc 63, 357361.
19. Murton, AJ, Constantin, D & Greenhaff, PL (2008) The involvement of the ubiquitin proteasome system in human skeletal muscle remodelling and atrophy. Biochimi Biophys Acta 1782, 730743.
20. Nicastro, H, da Luz, CR, Chaves, DF, et al. (2012) Does branched-chain amino acids supplementation modulate skeletal muscle remodeling through inflammation modulation? Possible mechanisms of action. J Nutr Metab 2012, 136937.
21. Cooke, MB, Rybalka, E, Stathis, CG, et al. (2010) Whey protein isolate attenuates strength decline after eccentrically-induced muscle damage in healthy individuals. J Int Soc Sports Nutr 7, 30.
22. Buckley, JD, Thomson, RL, Coates, AM, et al. (2010) Supplementation with a whey protein hydrolysate enhances recovery of muscle force-generating capacity following eccentric exercise. J Sci Med Sport 3, 178181.
23. Farup, J, Rahbek, SK, Knudsen, IS, et al. (2014) Whey protein supplementation accelerates satellite cell proliferation during recovery from eccentric exercise. Amino Acids 46, 25032516.
24. Howatson, G, Hoad, M, Goodall, S, et al. (2012) Exercise-induced muscle damage is reduced in resistance-trained males by branched chain amino acids: a randomized, double-blind, placebo controlled study. J Int Soc Sports Nutr 9, 20.
25. Jackman, SR, Witard, OC, Jeukendrup, AE, et al. (2010) Branched-chain amino acid ingestion can ameliorate soreness from eccentric exercise. Med Sci Sports Exerc 42, 962970.
26. Cruzat, VF, Krause, M & Newsholme, P (2014) Amino acid supplementation and impact on immune function in the context of exercise. J Int Soc Sports Nutr 11, 61.
27. Elango, R, Humayun, MA, Ball, RO, et al. (2010) Evidence that protein requirements have been significantly underestimated. Curr Opin Clin Nutr Metab Care 13, 5257.
28. Humayun, MA, Elango, R, Ball, RO, et al. (2007) Reevaluation of the protein requirement in young men with the indicator amino acid oxidation technique. American J Clin Nutr 86, 9951002.
29. Chatzinikolaou, A, Christoforidis, C, Avloniti, A, et al. (2014) A microcycle of inflammation following a team handball game. J Strength Cond Res 28, 19811994.
30. Raastad, T, Owe, SG, Paulsen, G, et al. (2010) Changes in calpain activity, muscle structure, and function after eccentric exercise. Med Sci Sports Exerc 42, 8695.
31. Areta, JL, Burke, LM, Ross, ML, et al. (2013) Timing and distribution of protein ingestion during prolonged recovery from resistance exercise alters myofibrillar protein synthesis. J Physiol 591, 23192331.
32. Moore, DR, Areta, J, Coffey, VG, et al. (2012) Daytime pattern of post-exercise protein intake affects whole-body protein turnover in resistance-trained males. Nutr Metab 9, 91.
33. Naclerio, F, Larumbe-Zabala, E, Ashrafi, N, et al. (2017) Effects of protein-carbohydrate supplementation on immunity and resistance training outcomes: a double-blind, randomized, controlled clinical trial. Eur J Appl Physiol 117, 267277.
34. Volek, JS, Volk, BM, Gomez, AL, et al. (2013) Whey protein supplementation during resistance training augments lean body mass. J Am Coll Nutr 32, 122135.
35. Theodorou, AA, Nikolaidis, MG, Paschalis, V, et al. (2010) Comparison between glucose-6-phosphate dehydrogenase-deficient and normal individuals after eccentric exercise. Med Sci Sports Exerc 42, 11131121.
36. Barbas, I, Fatouros, IG, Douroudos, II, et al. (2011) Physiological and performance adaptations of elite Greco-Roman wrestlers during a one-day tournament. Eur J Appl Physiol 111, 14211436.
37. Kraemer, WJ, Solomon-Hill, G, Volk, BM, et al. (2013) The effects of soy and whey protein supplementation on acute hormonal reponses to resistance exercise in men. J Am Coll Nutr 32, 6674.
38. Terzis, G, Stratakos, G, Manta, P, et al. (2008) Throwing performance after resistance training and detraining. J Strength Cond Res 22, 11981204.
39. Chondrogianni, N, Stratford, FL, Trougakos, IP, et al. (2003) Central role of the proteasome in senescence and survival of human fibroblasts: induction of a senescence-like phenotype upon its inhibition and resistance to stress upon its activation. J Biol Chem 278, 2802628037.
40. Myeku, N, Metcalfe, MJ, Huang, Q, et al. (2011) Assessment of proteasome impairment and accumulation/aggregation of ubiquitinated proteins in neuronal cultures. Methods Mol Biol 793, 273296.
41. Sala, D & Zorzano, A (2015) Differential control of muscle mass in type 1 and type 2 diabetes mellitus. Cell Mol Life Sci 72, 38033817.
42. Morton, JP, Kayani, AC, McArdle, A, et al. (2009) The exercise-induced stress response of skeletal muscle, with specific emphasis on humans. Sports Med 39, 643662.
43. Rom, O & Reznick, AZ (2016) The role of E3 ubiquitin-ligases MuRF-1 and MAFbx in loss of skeletal muscle mass. Free Radic Biol Med 98, 218230.
44. Stefanetti, RJ, Lamon, S, Wallace, M, et al. (2015) Regulation of ubiquitin proteasome pathway molecular markers in response to endurance and resistance exercise and training. Pflugers Arch 467, 15231537.
45. Reid, MB (2005) Response of the ubiquitin-proteasome pathway to changes in muscle activity. Am J Physiol Regul Integr Comp Physiol 288, R1423R1431.
46. Nedergaard, A, Vissing, K, Overgaard, K, et al. (2007) Expression patterns of atrogenic and ubiquitin proteasome component genes with exercise: effect of different loading patterns and repeated exercise bouts. J Appl Physiol (1985) 103, 15131522.
47. Borgenvik, M, Apro, W & Blomstrand, E (2012) Intake of branched-chain amino acids influences the levels of MAFbx mRNA and MuRF-1 total protein in resting and exercising human muscle. Am J Physiol Endocrinol Metab 302, E510E521.
48. Greenhaff, PL, Karagounis, LG, Peirce, N, et al. (2008) Disassociation between the effects of amino acids and insulin on signaling, ubiquitin ligases, and protein turnover in human muscle. Am J Physiol Endocrinol Metab 295, E595E604.
49. Rahbek, SK, Farup, J, de Paoli, F, et al. (2015) No differential effects of divergent isocaloric supplements on signaling for muscle protein turnover during recovery from muscle-damaging eccentric exercise. Amino Acids 47, 767778.
50. Bowen, TS, Schuler, G & Adams, V (2015) Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia, Sarcopenia Muscle 6, 197207.
51. Onesti, JK & Guttridge, DC (2014) Inflammation based regulation of cancer cachexia. Biomed Res Int 2014, 168407.
52. Kostek, MC, Chen, YW, Cuthbertson, DJ, et al. (2007) Gene expression responses over 24 h to lengthening and shortening contractions in human muscle: major changes in CSRP3, MUSTN1, SIX1, and FBXO32. Physiol Genomics 31, 4252.
53. Feasson, L, Stockholm, D, Freyssenet, D, et al. (2002) Molecular adaptations of neuromuscular disease-associated proteins in response to eccentric exercise in human skeletal muscle. J Physiol 543, 297306.
54. Kim, HJ, Jamart, C, Deldicque, L, et al. (2011) Endoplasmic reticulum stress markers and ubiquitin-proteasome pathway activity in response to a 200-km run. Med Sci Sports Exerc 43, 1825.
55. Ishii, T, Sakurai, T, Usami, H, et al. (2005) Oxidative modification of proteasome: identification of an oxidation-sensitive subunit in 26 S proteasome. Biochemistry 44, 1389313901.
56. Reeg, S, Jung, T, Castro, JP, et al. (2016) The molecular chaperone Hsp70 promotes the proteolytic removal of oxidatively damaged proteins by the proteasome. Free Radic Biol Med 99, 153166.
57. Um, JW, Im, E, Lee, HJ, et al. (2010) Parkin directly modulates 26S proteasome activity. J Neurosci 30, 1180511814.
58. Liu, Y, Lormes, W, Baur, C, et al. (2000) Human skeletal muscle HSP70 response to physical training depends on exercise intensity. Int J Sports Med 21, 351355.
59. Grune, T, Catalgol, B, Licht, A, et al. (2011) HSP70 mediates dissociation and reassociation of the 26S proteasome during adaptation to oxidative stress. Free Radic Biol Med 51, 13551364.
60. Tidball, JG & Villalta, SA (2010) Regulatory interactions between muscle and the immune system during muscle regeneration. Am J Physiol Regul Integr Comp Physiol 298, R1173R1187.
61. Draganidis, D, Karagounis, LG, Athanailidis, I, et al. (2016) Inflammaging and skeletal muscle: can protein intake make a difference? J Nutr 146, 19401952.
62. Gomez-Cabrera, MC, Martinez, A, Santangelo, G, et al. (2006) Oxidative stress in marathon runners: interest of antioxidant supplementation. Br J Nutr 96, Suppl. 1, S31S33.
63. Bendtsen, LQ, Lorenzen, JK, Bendsen, NT, et al. (2013) Effect of dairy proteins on appetite, energy expenditure, body weight, and composition: a review of the evidence from controlled clinical trials. Adv Nutr 4, 418438.
64. Shimomura, Y, Inaguma, A, Watanabe, S, et al. (2010) Branched-chain amino acid supplementation before squat exercise and delayed-onset muscle soreness. Int J Sport Nutr Exerc Metab 20, 236244.
65. Nosaka, K, Sacco, P & Mawatari, K (2006) Effects of amino acid supplementation on muscle soreness and damage. Int J Sport Nutr Exerc Metab 16, 620635.
66. White, JP, Wilson, JM, Austin, KG, et al. (2008) Effect of carbohydrate-protein supplement timing on acute exercise-induced muscle damage. J Int Soc Sports Nutr 5, 5.
67. Proske, U & Morgan, DL (2001) Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol 537, 333345.
68. Kato, H, Miura, K, Nakano, S, et al. (2016) Leucine-enriched essential amino acids attenuate inflammation in rat muscle and enhance muscle repair after eccentric contraction. Amino Acids 48, 21452155.
69. Rowlands, DS, Nelson, AR, Raymond, F, et al. (2016) Protein-leucine ingestion activates a regenerative inflammo-myogenic transcriptome in skeletal muscle following intense endurance exercise. Physiol Genomics 48, 2132.
70. Pereira, MG, Baptista, IL, Carlassara, EO, et al. (2014) Leucine supplementation improves skeletal muscle regeneration after cryolesion in rats. PLOS ONE 9, e85283.
71. Kyriakides, C, Austen, W Jr., Wang, Y, et al. (1999) Skeletal muscle reperfusion injury is mediated by neutrophils and the complement membrane attack complex. Am J Physiol 277, C1263C1268.
72. Cobley, JN, McGlory, C, Morton, JP, et al. (2011) N-Acetylcysteine’s attenuation of fatigue after repeated bouts of intermittent exercise: practical implications for tournament situations. Int J Sport Nutr Exerc Metab 21, 451461.
73. Stefanetti, RJ, Lamon, S, Rahbek, SK, et al. (2014) Influence of divergent exercise contraction mode and whey protein supplementation on atrogin-1, MuRF1, and FOXO1/3A in human skeletal muscle. J Appl Physiol (1985) 116, 14911502.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *


Type Description Title
Supplementary materials

Draganidis et al supplementary material
Figure S2

 PDF (183 KB)
183 KB
Supplementary materials

Draganidis et al supplementary material
Figure S4

 PDF (174 KB)
174 KB
Supplementary materials

Draganidis et al supplementary material
Figure S1

 PDF (182 KB)
182 KB
Supplementary materials

Draganidis et al supplementary material
Figure S3

 PDF (241 KB)
241 KB
Supplementary materials

Draganidis et al supplementary material
Figure S5

 PDF (174 KB)
174 KB


Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed