Skip to main content Accessibility help
×
×
Home

Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children

  • Ramadass Balamurugan (a1), Gemlyn George (a1), Jayakanthan Kabeerdoss (a1), Jancy Hepsiba (a1), Aarthy M. S. Chandragunasekaran (a1) and Balakrishnan S. Ramakrishna (a1)...
Abstract

Gut bacteria contribute to energy conservation in man through their ability to ferment unabsorbed carbohydrate. The present study examined the composition of predominant faecal microbiota in obese and non-obese children. The participants (n 28) aged 11–14 years provided fresh faecal samples and completed a dietary survey consisting of 24 h diet recall and a FFQ of commonly used foods taken over the previous 3 months. Faecal bacteria were quantitated by real-time PCR using primers targeted at 16S rDNA. Of the participants, fifteen (seven female) were obese, with median BMI-for-age at the 99th percentile (range 97 to>99) while thirteen participants (seven female) were normal weight, with median BMI-for age being at the 50th percentile (range 1–85). Consumption of energy, carbohydrates, fat and protein was not significantly different between the obese and non-obese participants. There was no significant difference between the two groups in faecal levels of BacteroidesPrevotella, Bifidobacterium species, Lactobacillus acidophilus group or Eubacterium rectale. Levels of Faecalibacterium prausnitzii were significantly higher in obese children than in non-obese participants (P = 0·0253). We concluded that the finding of increased numbers of F. prausnitzii in the faeces of obese children in south India adds to the growing information on alterations in faecal microbiota in obesity.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Quantitative differences in intestinal Faecalibacterium prausnitzii in obese Indian children
      Available formats
      ×
Copyright
Corresponding author
*Corresponding author: Dr B. S. Ramakrishna, fax +91 416 2282486, email rama@cmcvellore.ac.in
References
Hide All
1Friedman, JM (2000) Obesity in the new millennium. Nature 404, 632634.
2Ramakrishna, BS (2007) The normal bacterial flora of the human intestine and its regulation. J Clin Gastroenterol 47, Suppl. 1, S2S6.
3McNeil, NI (1984) The contribution of the large intestine to energy supplies in man. Am J Clin Nutr 39, 338342.
4Behall, KM & Howe, JC (1995) Contribution of fiber and resistant starch to metabolizable energy. Am J Clin Nutr 62, Suppl., 1158S1160S.
5Bingham, S, Cummings, JH & McNeil, NI (1982) Diet and health of people with an ileostomy. 1. Dietary assessment. Br J Nutr 47, 399406.
6McNeil, NI, Bingham, S, Cole, TJ, et al. (1982) Diet and health of people with an ileostomy. 2. Ileostomy function and nutritional state. Br J Nutr 47, 407415.
7Cummings, JH & Englyst, HN (1987) Fermentation in the human large intestine and the available substrates. Am J Clin Nutr 45, 12431255.
8Turnbaugh, PJ, Ley, RE, Mahowald, MA, et al. (2006) An obesity-associated gut microbiome with increased capacity for energy harvest. Nature 444, 10271031.
9Backhed, F, Ding, H, Wang, T, et al. (2004) The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci U S A 101, 1571815723.
10Ley, RE, Backhed, F, Turnbaugh, P, et al. (2005) Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102, 1107011075.
11Zhang, H, DiBaise, JK, Zuccolo, A, et al. (2009) Human gut microbiota in obesity and after gastric bypass. Proc Natl Acad Sci U S A 106, 23652370.
12Duncan, SH, Lobley, GE, Holtrop, G, et al. (2008) Human colonic microbiota associated with diet, obesity and weight loss. Int J Obes (Lond) 32, 17201724.
13World Health Organization (2006) BMI-for-age standards. In WHO Child Growth Standards, Chapter 6. Geneva: WHO. www.who.int/entity/childgrowth/standards/Chap_6.pdf (accessed September 2009).
14Kumar, N, Shekhar, C, Kumar, P, et al. (2007) Kuppuswami's socioeconomic status scale – updating for 2007. Indian J Pediatr 74, 11311132.
15Gopalan, C, Rama Sastri, BV & Balasubramanian, SC (2004) Nutritive Values of Indian Foods. New Delhi: Indian Council of Medical Research.
16Balamurugan, R, Janardhan, HP, George, S, et al. (2008) Molecular studies of fecal anaerobic commensal bacteria in acute diarrhea in children. J Pediatr Gastroenterol Nutr 46, 514519.
17Balamurugan, R, Janardhan, HP, George, S, et al. (2008) Bacterial succession in the colon during childhood and adolescence: molecular studies in a southern Indian village. Am J Clin Nutr 88, 16431647.
18Turnbaugh, PJ, Hamady, M, Yatsunenko, T, et al. (2009) A core gut microbiome in obese and lean twins. Nature 457, 480484.
19Mueller, S, Saunier, K, Hanisch, C, et al. (2006) Differences in fecal microbiota in different European study populations in relation to age, gender, and country: a cross-sectional study. Appl Environ Microbiol 72, 10271033.
20Salyers, AA (1984) Bacteroides of the human lower intestinal tract. Annu Rev Microbiol 38, 293313.
21Suau, A, Rochet, V, Sghir, A, et al. (2001) Fusobacterium prausnitzii and related species represent a dominant group within the human fecal flora. Syst Appl Microbiol 24, 139145.
22Louis, P & Flint, HJ (2009) Diversity, metabolism and microbial ecology of butyrate-producing bacteria from the human large intestine. FEMS Microbiol Lett 294, 18.
23Lay, C, Sutren, M, Rochet, V, et al. (2005) Design and validation of 16S rRNA probes to enumerate members of the Clostridium leptum subgroup in human faecal microbiota. Environ Microbiol 7, 933946.
24Li, M, Wang, B, Zhang, M, et al. (2008) Symbiotic gut microbes modulate human metabolic phenotypes. Proc Natl Acad Sci U S A 105, 21172122.
25Ramakrishna, BS & Roediger, WEW (1990) Bacterial short chain fatty acids: their role in gastrointestinal disease. Dig Dis 8, 337345.
26van Tongeren, SP, Slaets, JP, Harmsen, HJ, et al. (2005) Fecal microbiota composition and frailty. Appl Environ Microbiol 71, 64386442.
27Swidsinski, A, Loening-Baucke, V, Verstraelen, H, et al. (2008) Biostructure of fecal microbiota in healthy subjects and patients with chronic idiopathic diarrhea. Gastroenterology 135, 568579.
28Duncan, SH, Belenguer, A, Holtrop, G, et al. (2007) Reduced dietary intake of carbohydrates by obese subjects results in decreased concentrations of butyrate and butyrate-producing bacteria in feces. Appl Environ Microbiol 73, 10731078.
29Tilg, H, Moschen, AR & Kaser, A (2009) Obesity and the microbiota. Gastroenterology 136, 14761483.
30Cani, PD, Bibiloni, R, Knauf, C, et al. (2008) Changes in gut microbiota control metabolic endotoxemia-induced inflammation in high-fat diet-induced obesity and diabetes in mice. Diabetes 57, 14701481.
31Cani, PD, Possemiers, S, Van de Wiele, T, et al. (2009) Changes in gut microbiota control inflammation in obese mice through a mechanism involving GLP-2-driven improvement of gut permeability. Gut 58, 10911103.
32Sokol, H, Seksik, P, Furet, JP, et al. (2009) Low counts of Faecalibacterium prausnitzii in colitis microbiota. Inflamm Bowel Dis 15, 11831189.
33Willing, B, Halfvarson, J, Dicksved, J, et al. (2009) Twin studies reveal specific imbalances in the mucosa-associated microbiota of patients with ileal Crohn's disease. Inflamm Bowel Dis 15, 653660.
34Kalliomaki, M, Collado, MC, Salminen, S, et al. (2008) Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87, 534538.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed