Skip to main content Accessibility help
×
×
Home

Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress

  • S. Gómez-Zorita (a1) (a2), A. Fernández-Quintela (a1) (a2), M. T. Macarulla (a1) (a2), L. Aguirre (a1) (a2), E. Hijona (a3), L. Bujanda (a3) (a4), F. Milagro (a5), J. A. Martínez (a2) (a5) and M. P. Portillo (a1) (a2)...

Abstract

Non-alcoholic fatty liver disease (NAFLD) is one of the most common manifestations of chronic liver disease worldwide. The aim of the present study was to assess the effect of resveratrol on liver fat accumulation, as well as on the activity of those enzymes involved in lipogenesis and fatty acid oxidation in fa/fa Zucker rats. A total of thirty rats were assigned to three experimental groups and orally treated with resveratrol for 6 weeks, or without resveratrol (C: control group; RSV15 group: 15 mg/kg body weight per d; RSV45 group: 45 mg/kg body weight per d). Liver histological analysis was performed by microscopy. Levels of hepatic carnitine palmitoyltransferase-Ia (CPT-Ia), acyl-coenzyme A oxidase (ACO), fatty acid synthase, glucose-6-phosphate dehydrogenase and malic enzyme were assessed by spectrophotometry, and acetyl-CoA carboxylase was assessed by radiometry. Commercial kits were used to determine serum TAG, NEFA, total HDL and non-HDL-cholesterol, glycerol, ketonic bodies, glucose, insulin, adiponectin, aspartate aminotransferase (AST), alanine aminotransferase (ALT) and alkaline phosphatase (ALP), hepatic TAG, thiobarbituric acid reactive substrates, GSH (GSSG) and superoxide dismutase. Resveratrol reduced liver weight and TAG content. It did not modify the activity of lipogenic enzymes but it did increase CPT-Ia and ACO activities. NEFA and ALP were reduced in both resveratrol-treated groups. AST/GOT was reduced only by the lowest dose. ALT/GPT, TAG and adiponectin remained unchanged. Resveratrol reduced liver oxidative stress. This study demonstrates that resveratrol can protect the liver from NAFLD by reducing fatty acid availability. Moreover, resveratrol also protects liver from oxidative stress.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Resveratrol attenuates steatosis in obese Zucker rats by decreasing fatty acid availability and reducing oxidative stress
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: Professor M. P. Portillo, fax +34 945 013014, email mariapuy.portillo@ehu.es

References

Hide All
1 Bellentani, S & Tiribelli, C (2001) The spectrum of liver disease in the general population: lessons from Dyonisos study. J Hepatol 35, 531537.
2 Fabrini, E, Sullivan, S & Klein, S (2010) Obesity and non-alcoholic fatty liver disease: biochemical, metabolic and clinical implications. Hepatology 51, 679689.
3 Marchesini, G, Bugianesi, E, Forlani, G, et al. (2003) Nonalcoholic fatty liver, steatohepatitis and the metabolic syndrome. Hepatology 37, 917923.
4 Argiles, JM (1989) The obese Zucker rat: a choice for fat metabolism. Pro Lipid Res 28, 3366.
5 Langcake, P & Pryce, RJ (1974) The production of resveratrol by Vitis vinifera and other members of the Vitaceae as a response to infection or injury. Physiol Plant Phatol 9, 7786.
6 Signorelli, P & Ghidoni, R (2005) Resveratrol as an anticancer nutrient: molecular basis, open questions and promises. J Nutr Biochem 16, 449466.
7 Frémont, L (2000) Biological effects of resveratrol. Life Sci 66, 663673.
8 Goswami, SK & Das, DK (2009) Resveratrol and chemoprevention. Cancer Lett 284, 16.
9 Cucciolla, V, Borriello, A, Oliva, A, et al. (2007) Resveratrol: from basic science to the clinic. Cell Cycle 6, 24952510.
10 Baur, JA, Pearson, KJ, Price, NL, et al. (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444, 337342.
11 Lagouge, M, Argmann, C, Gerhart-Hines, Z, et al. (2006) Resveratrol improves mitochondrial function and protects against metabolic disease by activating SIRT1 and PGC-1α. Cell 127, 11091122.
12 Zang, M, Xu, S, Maitland-Toolan, A, et al. (2006) Polyphenols stimulate AMP-activated protein kinase, lower lipids and inhibit accelerated atherosclerosis in diabetic LDL receptor-deficient mice. Diabetes 55, 21802191.
13 Ahn, J, Cho, I, Kim, S, et al. (2008) Dietary resveratrol alters lipid metabolism-related gene expression of mice on an atherogenic diet. J Hepatol 49, 10191028.
14 Shang, J, Chen, LL, Xiao, F, et al. (2008) Resveratrol improves non-alcoholic fatty acid disease by activating AMP-activated protein kinase. Acta Pharmacol Sin 29, 698706.
15 Macarulla, MT, Alberdi, G, Gómez, S, et al. (2009) Effects of different doses of resveratrol on body fat and serum parameters in rats fed a hypercaloric diet. J Physiol Biochem 65, 369376.
16 Rivera, L, Morón, R, Zarzuelo, A, et al. (2009) Long-term resveratrol administration reduces metabolic disturbances and lowers blood pressure in obese Zucker rats. Biochem Pharmacol 77, 10531063.
17 Van der Spuy, W & Pretorius, E (2009) Is the use of resveratrol in the treatment and prevention of obesity premature? Br J Nutr 22, 111117.
18 Szkudelska, K & Szkudelski, T (2010) Resveratrol, obesity and diabetes. Eur J Pharmacol 635, 18.
19 Folch, J, Lees, M & Sloane Stanley, GH (1957) A simple method for the isolation and purification of total lipides from animal tissues. J Biol Chem 226, 497509.
20 Brunt, EM, Janney, CG, Di Bisceglie, AM, et al. (1999) Non-alcoholic steatosis: a proposal for grading and staging the histological lesions. Am J Gastroenterol 94, 24672474.
21 Zabala, A, Churruca, I, Macarulla, MT, et al. (2004) The trans-10, cis-12 isomer of conjugated linoleic acid reduces hepatic triacylglycerol content without affecting lipogenic enzymes in hamsters. Br J Nutr 92, 383389.
22 Bieber, L, Abraham, T & Helmrath, T (1972) A rapid spectrophotometric assay for carnitine palmitoyltransferase. Anal Biochem 50, 509518.
23 Lazarow, P (1981) Assay of peroxisomal beta-oxidation of fatty acids. Methods Enzymol 72, 315319.
24 Bradford, M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72, 248254.
25 Bujanda, L, Hijona, E, Larzabal, M, et al. (2008) Resveratrol inhibits non-alcoholic fatty liver disease in rats. BMC Gastroenterol 8, 4048.
26 Kleiner, DE, Brunt, EM, Natta, MV, et al. (2005) Design and validation of a histological scoring system for nonalcoholic fatty liver disease. Hepatology 41, 13131321.
27 Bertelli, AA, Giovannini, L, Stradi, R, et al. (1998) Evaluation of kinetic parameters of natural phytoalexin in resveratrol orally administered in wine to rats. Drugs Exp Clin Res 24, 5155.
28 Zabala, A, Churruca, I, Macarulla, MT, et al. (2004) The trans-10, cis-12 isomer of conjugated linoleic acid reduces heaptic triacylglycerol content without affecting lipogenic enzymes in hamsters. Br J Nutr 92, 282289.
29 Szkudelska, K & Szkudelski, T (2010) Resveratrol, obesity and diabetes. Eur J Pharmacol 635, 18.
30 Katsurada, A, Iritani, N, Fukuda, H, et al. (1990) Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of fatty acid synthase in rat liver. Eur J Biochem 190, 427433.
31 Kim, K, Park, S & Kim, Y (1992) Regulation of fatty acid synthase at transcriptional and post-transcriptional levels in rat liver. Yonsei Med J 33, 199208.
32 Munday, MR (2002) Regulation of mammalian acetyl CoA carboxylase. Biochem Soc Trans 30, 10591064.
33 Tong, L (2005) Acetyl-Coenzyme A carboxylase: crucial metabolic enzyme and attractive target for drug discovery. Cell Mol Life Sci 62, 17841803.
34 Howitz, KT, Bittrman, KJ, Cohen, HY, et al. (2003) Small molecule activator of sirtuins extends Saccharomyces cerevisiae life span. Nature 425, 191196.
35 Borra, MT, Smith, BC & Denu, JM (2005) Mechanism of human SIRT1 activation by resveratrol. J Biol Chem 280, 1718717195.
36 Medina-Gómez, G, Gray, S & Vidal-Puig, A (2007) Adipogenesis and lipotoxicity; role of peroxisome proliferator-activated receptor γ (PPARγ) and PPARγ-coactivator-1 (PGC1). Public Health Nutr 10, 11321137.
37 Stefanovic-Racic, M, Perdomo, G, Mantell, BS, et al. (2008) A moderate increase in carnitine palmitoyltransferase 1a activity is sufficient to substantially reduce hepatic triglyceride levels. Am J Physiol 294, E969E977.
38 Xu, A, Wang, Y, Keshaw, H, et al. (2003) The fat-derived hormone adiponectin alleviates alcoholic and nonalcoholic fatty liver diseases in mice. J Clin Invest 112, 91100.
39 Raz, I, Eldor, R, Cernea, S, et al. (2005) Diabetes: insulin resistance and derangements in lipid metabolism. Cure through intervention in fat transport and storage. Diabetes Metabol Res Rev 21, 314.
40 Pruneta, V, Autran, D, Ponsin, G, et al. (2001) Ex vivo measurement of lipoprotein lipase-dependent very low density lipoprotein (VLDL)-triglyceride hydrolysis in human VLDL: an alternative to the postheparin assay of lipoprotein lipase activity? J Clin Endocrinol Metab 86, 797803.
41 Duvnjak, M, Lerotic, I, Barsic, N, et al. (2007) Pathogenesis and management issues for non-alcoholic fatty liver disease. World J Gastroenterol 13, 45394550.
42 Spolarics, Z & Meyenhofer, M (2000) Augmented resistance to oxidative stress in fatty rat livers induced by a short-term sucrose-rich diet. Biochim Biophys Acta 1487, 190200.
43 Albano, E, Mottaran, E, Vidali, M, et al. (2005) Immune response towards lipid peroxidation products as a predictor of progression of non-alcoholic fatty liver disease to advanced fibrosis. Gut 54, 987993.
44 Faine, LA, Rodrigues, HG, Galhardi, CM, et al. (2006) Effects of olive oil and its minor constituents on serum lipids, oxidative stress and energy metabolism in cardiac muscle. Can J Physiol Pharmacol 84, 239245.
45 Valdecantos, MP, Pérez-Matute, P & Martínez, JA (2009) Obesity and oxidative stress: role of antioxidant supplementation. Rev Invest Clin 61, 127139.
46 Yu, BP (1994) Cellular defenses against damage reactive oxygen species. Physiol Rev 74, 139162.
47 Thong-Ngam, D, Samuhasaneeto, S, Kulaputana, O, et al. (2007) N-acetylcysteine attenuates oxidative stress and liver pathology in rats with non-alcoholic steatohepatitis. J Gastroenterol 14, 51275132.
48 Cho, IJ, Ahn, JY, Kim, S, et al. (2008) Resveratrol attenuates the expression of HMG-CoA reductase mRNA in hamsters. Biochem Biophys Res Comm 367, 190194.
49 Sbarra, V, Ristorcelli, E, Le Pétit-Thévenin, J, et al. (2005) In vitro polyphenol effects on activity, expression and secretion of pancreatic bile salt-dependent lipase. Biochim Biophys Acta 1736, 6776.
50 Miura, D, Miura, Y & Yagasaki, K (2003) Hypolipidemic action of dietary resveratrol, a phytoalexin in grapes and red wine, in hepatoma-bearing rats. Life Sci 73, 13931400.
51 Noll, C, Hamalet, J, Ducros, V, et al. (2009) Resveratrol supplementation worsen the dysregulation of genes involved in hepatic lipid homeostasis observed in hyperhomocysteinemic mice. Food Chem Toxicol 47, 230236.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed