Skip to main content Accessibility help
×
×
Home

The satiety effect of disguised liquid preloads administered acutely and differing only in their nutrient content tended to be weaker for lipids but did not differ between proteins and carbohydrates in human subjects

  • Mylène Potier (a1), Gilles Fromentin (a1) (a2), Aurélie Lesdema (a1) (a2), Robert Benamouzig (a3), Daniel Tomé (a1) (a2) and Agnès Marsset-Baglieri (a1) (a2)...

Abstract

Whether protein is the macronutrient with the strongest satiety effect remains a matter of debate because of the diversity of study designs employed. The aim of the present study was to compare the effect of different liquid preloads made up of proteins, fats or carbohydrates only, under stringently controlled conditions, on satiety. Fifty-six subjects participated in the present study which consisted of four randomised test days, i.e. 1 d per macronutrient and one control day. During each test day, the subjects were required to consume the preload in full, and then their subsequent food intake was measured. The volunteers were divided into two groups: the first (T0) group, which consumed the preload immediately before lunch, and the second (T1) group, which consumed it 1 h beforehand. The main results showed that the participants consumed significantly less at lunch following the consumption of all three preloads than on the no-preload day, and consumed less after the consumption of the carbohydrate preload than after the consumption of the lipid preload. When energy from the preload was included, overall energy intake was significantly greater in all the three preload conditions than in the situation involving no preload, with only partial compensation for preload energy in all conditions. Total daily energy intake was highest after the lipid preload ingestion, but this could be a chance finding since it was not significantly higher than that observed after protein or carbohydrate preload ingestion. No significant effects of the interval between the preload and test meal ingestion were found. These results do not confirm the greater satiety effect of proteins than of carbohydrates, but partially confirm the weaker effect of fats.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      The satiety effect of disguised liquid preloads administered acutely and differing only in their nutrient content tended to be weaker for lipids but did not differ between proteins and carbohydrates in human subjects
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      The satiety effect of disguised liquid preloads administered acutely and differing only in their nutrient content tended to be weaker for lipids but did not differ between proteins and carbohydrates in human subjects
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      The satiety effect of disguised liquid preloads administered acutely and differing only in their nutrient content tended to be weaker for lipids but did not differ between proteins and carbohydrates in human subjects
      Available formats
      ×

Copyright

Corresponding author

*Corresponding author: A. Marsset-Baglieri, fax +33 1 44 08 18 58, email agnes.marsset-baglieri@agroparistech.fr

References

Hide All
1 Paddon-Jones, D, Westman, E, Mattes, RD, et al. (2008) Protein, weight management, and satiety. Am J Clin Nutr 87, 1558S1561S.
2 Hermsdorff, HH, Volp, AC & Bressan, J (2007) Macronutrient profile affects diet-induced thermogenesis and energy intake. Arch Latinoam Nutr 57, 3342.
3 Westerterp-Plantenga, MS (2003) The significance of protein in food intake and body weight regulation. Curr Opin Clin Nutr Metab Care 6, 635638.
4 Doucet, E & Tremblay, A (1997) Food intake, energy balance and body weight control. Eur J Clin Nutr 51, 846855.
5 Bertenshaw, EJ, Lluch, A & Yeomans, MR (2008) Satiating effects of protein but not carbohydrate consumed in a between-meal beverage context. Physiol Behav 93, 427436.
6 Leidy, HJ, Bossingham, MJ, Mattes, RD, et al. (2009) Increased dietary protein consumed at breakfast leads to an initial and sustained feeling of fullness during energy restriction compared to other meal times. Br J Nutr 101, 798803.
7 Gerstein, DE, Woodward-Lopez, G, Evans, AE, et al. (2004) Clarifying concepts about macronutrients' effects on satiation and satiety. J Am Diet Assoc 104, 11511153.
8 Bensaid, A, Tomé, D, Gietzen, D, et al. (2002) Protein is more potent than carbohydrate for reducing appetite in rats. Physiol Behav 75, 577582.
9 Latner, JD & Schwartz, M (1999) The effects of a high-carbohydrate, high-protein or balanced lunch upon later food intake and hunger ratings. Appetite 33, 119128.
10 Dove, ER, Hodgson, JM, Puddey, IB, et al. (2009) Skim milk compared with a fruit drink acutely reduces appetite and energy intake in overweight men and women. Am J Clin Nutr 90, 7075.
11 Hochstenbach-Waelen, A, Veldhorst, MA, Nieuwenhuizen, AG, et al. (2009) Comparison of 2 diets with either 25 % or 10 % of energy as casein on energy expenditure, substrate balance, and appetite profile. Am J Clin Nutr 89, 831838.
12 Veldhorst, MA, Nieuwenhuizen, AG, Hochstenbach-Waelen, A, et al. (2009) Effects of high and normal soyprotein breakfasts on satiety and subsequent energy intake, including amino acid and ‘satiety’ hormone responses. Eur J Nutr 48, 92100.
13 Bertenshaw, EJ, Lluch, A & Yeomans, MR (2009) Dose-dependent effects of beverage protein content upon short-term intake. Appetite 52, 580587.
14 Porrini, M, Santangelo, A, Crovetti, R, et al. (1997) Weight, protein, fat, and timing of preloads affect food intake. Physiol Behav 62, 563570.
15 de Graaf, C, Schreurs, A & Blauw, YH (1993) Short-term effects of different amounts of sweet and nonsweet carbohydrates on satiety and energy intake. Physiol Behav 54, 833843.
16 Geliebter, AA (1979) Effects of equicaloric loads of protein, fat, and carbohydrate on food intake in the rat and man. Physiol Behav 22, 267273.
17 Rolls, BJ, Kim, S, McNelis, AL, et al. (1991) Time course of effects of preloads high in fat or carbohydrate on food intake and hunger ratings in humans. Am J Physiol 260, R756R763.
18 Capaldi, ED, Owens, JQ & Privitera, GJ (2006) Isocaloric meal and snack foods differentially affect eating behavior. Appetite 46, 117123.
19 Drewnowski, A (1998) Energy density, palatability, and satiety: implications for weight control. Nutr Rev 56, 347353.
20 Poppitt, SD, McCormack, D & Buffenstein, R (1998) Short-term effects of macronutrient preloads on appetite and energy intake in lean women. Physiol Behav 64, 279285.
21 Mattes, RD & Rothacker, D (2001) Beverage viscosity is inversely related to postprandial hunger in humans. Physiol Behav 74, 551557.
22 Mattes, RD (1996) Dietary compensation by humans for supplemental energy provided as ethanol or carbohydrate in fluids. Physiol Behav 59, 179187.
23 DiMeglio, DP & Mattes, RD (2000) Liquid versus solid carbohydrate: effects on food intake and body weight. Int J Obes Relat Metab Disord 24, 794800.
24 Booth, DA, Chase, A & Campbell, AT (1970) Relative effectiveness of protein in the late stages of appetite suppression in man. Physiol Behav 5, 12991302.
25 Booth, DA & Jarman, SP (1976) Inhibition of food intake in the rat following complete absorption of glucose delivered into the stomach, intestine or liver. J Physiol 259, 501522.
26 Fischer, K, Colombani, PC & Wenk, C (2004) Metabolic and cognitive coefficients in the development of hunger sensations after pure macronutrient ingestion in the morning. Appetite 42, 4961.
27 Raben, A, Agerholm-Larsen, L, Flint, A, et al. (2003) Meals with similar energy densities but rich in protein, fat, carbohydrate, or alcohol have different effects on energy expenditure and substrate metabolism but not on appetite and energy intake. Am J Clin Nutr 77, 91100.
28 Anderson, GH, Tecimer, SN, Shah, D, et al. (2004) Protein source, quantity, and time of consumption determine the effect of proteins on short-term food intake in young men. J Nutr 134, 30113015.
29 Almiron-Roig, E, Chen, Y & Drewnowski, A (2003) Liquid calories and the failure of satiety: how good is the evidence? Obes Rev 4, 201212.
30 Rolls, BJ, Bell, EA & Thorwart, ML (1999) Water incorporated into a food but not served with a food decreases energy intake in lean women. Am J Clin Nutr 70, 448455.
31 Kissileff, HR, Gruss, LP, Thornton, J, et al. (1984) The satiating efficiency of foods. Physiol Behav 32, 319332.
32 Rolls, BJ, Fedoroff, IC, Guthrie, JF, et al. (1990) Foods with different satiating effects in humans. Appetite 15, 115126.
33 Himaya, A & Louis-Sylvestre, J (1998) The effect of soup on satiation. Appetite 30, 199210.
34 Stunkard, AJ & Messick, S (1985) The three-factor eating questionnaire to measure dietary restraint, disinhibition and hunger. J Psychosom Res 29, 7183.
35 Rolls, BJ, Kim-Harris, S, Fischman, MW, et al. (1994) Satiety after preloads with different amounts of fat and carbohydrate: implications for obesity. Am J Clin Nutr 60, 476487.
36 Kirkmeyer, SV & Mattes, RD (2000) Effects of food attributes on hunger and food intake. Int J Obes Relat Metab Disord 24, 11671175.
37 Marmonier, C, Chapelot, D & Louis-Sylvestre, J (2000) Effects of macronutrient content and energy density of snacks consumed in a satiety state on the onset of the next meal. Appetite 34, 161168.
38 Rolls, BJ, Hetherington, M & Burley, VJ (1988) The specificity of satiety: the influence of foods of different macronutrient content on the development of satiety. Physiol Behav 43, 145153.
39 Hall, WL, Millward, DJ, Long, SJ, et al. (2003) Casein and whey exert different effects on plasma amino acid profiles, gastrointestinal hormone secretion and appetite. Br J Nutr 89, 239248.
40 Spitzer, L & Rodin, J (1987) Effects of fructose and glucose preloads on subsequent food intake. Appetite 8, 135145.
41 Raben, A (2002) Should obese patients be counselled to follow a low-glycaemic index diet? No. Obes Rev 3, 245256.
42 French, S (2004) Effects of dietary fat and carbohydrate on appetite vary depending upon site and structure. Br J Nutr 92, Suppl. 1, S23S26.
43 Whybrow, S, Mayer, C, Kirk, TR, et al. (2007) Effects of two weeks' mandatory snack consumption on energy intake and energy balance. Obesity (Silver Spring) 15, 673685.
44 de Graaf, C, Hulshof, T, Weststrate, JA, et al. (1992) Short-term effects of different amounts of protein, fats, and carbohydrates on satiety. Am J Clin Nutr 55, 3338.
45 Mattes, R (2005) Soup and satiety. Physiol Behav 83, 739747.
46 Louis-Sylvestre, J, Tournier, A, Verger, P, et al. (1989) Learned caloric adjustment of human intake. Appetite 12, 95103.
47 Yeomans, MR, Gould, NJ, Leitch, M, et al. (2009) Effects of energy density and portion size on development of acquired flavour liking and learned satiety. Appetite 52, 469478.
48 Booth, DA, Mather, P & Fuller, J (1982) Starch content of ordinary foods associatively conditions human appetite and satiation, indexed by intake and eating pleasantness of starch-paired flavours. Appetite 3, 163184.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed