Skip to main content
×
×
Home

Serum percentage undercarboxylated osteocalcin, a sensitive measure of vitamin K status, and its relationship to bone health indices in Danish girls

  • Eibhlis O'Connor (a1), Christian Mølgaard (a2), Kim F. Michaelsen (a2), Jette Jakobsen (a3), Christel J. E. Lamberg-Allardt (a4) and Kevin D. Cashman (a1) (a5)...
Abstract

Recent cross-sectional data suggest that better vitamin K status in young girls (aged 3–16 years) is associated with decreased bone turnover, even though it is not associated with bone mineral content (BMC). The objective of the present study was to investigate the relationship between serum percentage of undercarboxylated osteocalcin (%ucOC), as an index of vitamin K status, and BMC and biochemical indices of bone turnover in peri-pubertal Danish girls. This peri-pubertal stage is a dynamic period of bone development, and as such, may represent an important window of opportunity for vitamin K status to modulate childhood bone health. Serum %ucOC and serum 25-hydroxyvitamin D (25 (OH) D) were measured at baseline in a study of 223 healthy girls aged 11–12 years. Urinary pyridinium crosslinks of collagen and serum total osteocalcin as markers of bone resorption and formation, respectively, as well as BMC (total body and lumbar spine) were also measured. Serum %ucOC (median 21·9 %) was not associated with markers of bone resorption or with total osteocalcin. Serum %ucOC was inversely correlated with serum 25 (OH) D (r − 0·143; P < 0·05). Serum %ucOC was negatively associated with BMC of the total body (β − 0·045; P < 0·001) and lumbar spine (β − 0·055; P < 0·05), after adjustment for potential confounders including vitamin D status. Better vitamin K status was associated with increased BMC, but not bone turnover, in healthy peri-pubertal Danish girls. There is a need for well-designed, randomized phylloquinone supplementation trials in children and adolescents to confirm epidemiological findings of an association between vitamin K status and bone health.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Serum percentage undercarboxylated osteocalcin, a sensitive measure of vitamin K status, and its relationship to bone health indices in Danish girls
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Serum percentage undercarboxylated osteocalcin, a sensitive measure of vitamin K status, and its relationship to bone health indices in Danish girls
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Serum percentage undercarboxylated osteocalcin, a sensitive measure of vitamin K status, and its relationship to bone health indices in Danish girls
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: Prof. Kevin D. Cashman, fax +353 21 4270244, email k.cashman@ucc.ie
References
Hide All
Andersen, R, Molgaard, C, Skovgaard, LT, et al. (2005) Teenage girls and elderly women living in northern Europe have low winter vitamin D status. Eur J Clin Nutr 59, 533541.
Binkley, NC, Krueger, DC, Engelke, JA, Foley, AL & Suttie, JW (2000) Vitamin K supplementation reduces serum concentrations of under-γ-carboxylated osteocalcin in healthy young and elderly adults. Am J Clin Nutr 72, 15231528.
Binkley, NC & Suttie, JW (1995) Vitamin K nutrition and osteoporosis. J Nutr 125, 18121821.
Booth, SL, Broe, KE, Gagnon, DR, Tucker, KL, Hannan, MT, McLean, RR, Dawson-Hughes, B, Wilson, PW, Cupples, LA & Kiel, DP (2003) Vitamin K intake and bone mineral density in women and men. Am J Clin Nutr 77, 512516.
Booth, SL, Lichtenstein, AH, O'Brien-Morse, M, McKeown, NM, Wood, RJ, Saltzman, E & Gundberg, CM (2001) Effects of a hydrogenated form of vitamin K on bone formation and resorption. Am J Clin Nutr 74, 783790.
Booth, SL, Pennington, JA & Sadowski, JA (1996) Food sources and dietary intakes of vitamin K-1 (phylloquinone) in the American diet: data from the FDA Total Diet Study. J Am Diet Assoc 96, 149154.
Booth, SL, Tucker, KL, Chen, H, et al. (2000) Dietary vitamin K intakes are associated with hip fracture but not with bone mineral density in elderly men and women. Am J Clin Nutr 71, 12011208.
Boucher, GP, Lands, LC, Hay, JA & Hornby, L (1997) Activity levels and the relationship to lung function and nutritional status in children with cystic fibrosis. Am J Phys Med Rehab 76, 311315.
Braam, LA, Knapen, MH, Geusens, P, Brouns, F, Hamulyak, K, Gerichhausen, MJ & Vermeer, C (2003) Vitamin K1 supplementation retards bone loss in postmenopausal women between 50 and 60 years of age. Calcif Tissue Int 73, 2126.
Cheng, S, Tylavsky, F, Kroger, H, et al. (2003) Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. Am J Clin Nutr 78, 485492.
Christensen, T (2001) Outline of GIES: General Intake Estimation System. Fourth International Food Data Conference: New Trends in the Management and Uses of Food Databases, 24–26 August 2001, Bratislava, Slovakia (poster)..
Collins, A, Cashman, KD and Kiely, M (2006) Vitamin K1 intake and status in Irish adolescent girls. Int J Vitamin Nutr Res (In the Press).
Conway, SP, Wolfe, SP, Brownlee, KG, White, H, Oldroyd, B, Truscott, JG, Harvey, JM & Shearer, MJ (2005) Vitamin K status among children with cystic fibrosis and its relationship to bone mineral density and bone turnover. Pediatrics 115, 13251331.
Department of Health (1991) Dietary Reference Values for Food Energy and Nutrients for the United Kingdom, Report on Health and Social Subjects no. 41. London: HMSO.
Doyle, L, Jewell, C, Mullen, A, Nugent, AP, Roche, HM & Cashman, KD (2005) Effect of dietary supplementation with conjugated linoleic acid on markers of calcium and bone metabolism in healthy adult men. Eur J Clin Nutr 59, 432440.
Esmon, CT, Sadowski, JA & Suttie, JW (1975) A new carboxylation reaction: the vitamin K-dependent incorporation of H14 CO3 into prothrombin. J Biol Chem 250, 47444748.
Feskanich, D, Weber, P, Willett, WC, Rockett, H, Booth, SL & Colditz, GA (1999) Vitamin K intake and hip fractures in women: a prospective study. Am J Clin Nutr 69, 7479.
Food and Nutrition Board, Institute of Medicine (2001) Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Iron, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc. Washington, DC: National Academy Press.
Gundberg, CM, Nieman, SD, Abrams, S & Rosen, H (1998) Vitamin K status and bone health: an analysis of methods for determination of undercarboxylated osteocalcin. J Clin Endocrinol Metab 83, 32583266.
Jie, KSG, Bots, ML, Vermeer, C, Witteman, JCM & Grobbee, DE (1996) Vitamin K status and bone mass in women with and without aortic atherosclerosis: a population-based study. Calcif Tissue Int 59, 352356.
Kalkwarf, HJ, Khoury, JC, Bean, J & Elliot, JG (2004) Vitamin K, bone turnover, and bone mass in girls. Am J Clin Nutr 80, 10751080.
Kaneki, M, Hedges, SJ, Hosoi, T, et al. (2001) Japanese fermented soybean food as the major determinant of the large geographic difference in circulating levels of vitamin K2: possible implications for hip-fracture risk. Nutrition 17, 315321.
Kohlmeier, M, Salomon, A, Saupe, J & Shearer, MJ (1996) Transport of vitamin K to bone in humans. J Nutr 126, 1192S1196S.
Lehtonen-Veromaa, MK, Mottonen, TT, Nuotio, IO, Irjala, KM, Leino, AE & Viikari, JS (2002) Vitamin D and attainment of peak bone mass among peripubertal Finnish girls: a 3-y prospective study. Am J Clin Nutr 76, 14461453.
Marshall, WA & Tanner, JM (1969) Variations in pattern of pubertal changes in girls. Arch Dis Child 44, 291303.
Molgaard, C, Thomsen, BL & Michaelsen, KF (2001) The influence of calcium intake and physical activity on bone mineral content and bone size in healthy children and adolescents. Osteoporos Int 12, 887894.
National Research Council (1989) Recommended Dietary Allowances, 10th ed. Washington, DC: National Academy Press.
Nelson, DA & Koo, WWK (1999) Interpretation of absorptiometric bone mass measurements in the growing skeleton: issues and limitations. Calcif Tissue Int 65, 13.
Outila, TA, Karkkainen, MU & Lamberg-Allardt, CJ (2001) Vitamin D status affects serum parathyroid hormone concentrations during winter in female adolescents: associations with forearm bone mineral density. Am J Clin Nutr 74, 206210.
Prentice, A, Parsons, TJ & Cole, TJ (1994) Uncritical use of bone mineral density in absorptiometry may lead to size-related artifacts in the identification of bone mineral determinants. Am J Clin Nutr 60, 837842.
Pyrnne, CJ, Thane, CW, Prentice, A & Wadsworth, MEJ (2005) Intake and sources of phylloquinone (vitamin K1) in 4-year-old British children: comparison between 1950 and the 1990s. Publ Health Nutr 8, 171180.
Shearer, MJ (1990) Vitamin K and vitamin K dependent proteins. Br J Haematol 75, 156162.
Shearer, M (1997) The roles of vitamins D and K in bone health and osteoporosis prevention. Proc Nutr Soc 56, 915937.
Shearer, MJ (2000) Role of vitamin K and Gla proteins in the pathophysiology of osteoporosis and vascular calcification. Curr Opin Clin Nutr Metab Care 3, 433438.
Sokoll, LJ, Booth, SL, O'Brien, ME, Davidson, KW, Tsaioun, KI & Sadowski, JA (1997) Changes in serum osteocalcin, plasma phylloquinone and urinary γ-carboxyglutamic acid in response to altered intakes of dietary phylloquinone in human subjects. Am J Clin Nutr 65, 779784.
Sokoll, LJ & Sadowski, JA (1996) Comparison of biochemical indexes for assessing vitamin K status in a healthy adult population. Am J Clin Nutr 63, 566573.
Sugiyama, T & Kawai, S (2001) Carboxylation of osteocalcin may be related to bone quality: a possible mechanism of bone fracture prevention by vitamin K. J Bone Miner Metab 19, 146149.
Szulc, P, Arlot, M, Chapuy, MC, Duboeuf, F, Meunier, PJ & Delmas, PD (1994) Serum undercarboxylated osteocalcin correlates with hip bone mineral density in elderly women. J Bone Miner Res 9, 15911595.
Szulc, P, Chapuy, MC, Meunier, PJ & Delmas, PD (1993) Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture in elderly women. J Clin Invest 91, 17691774.
Szulc, P, Chapuy, MC, Meunier, PJ & Delmas, PD (1996) Serum undercarboxylated osteocalcin is a marker of the risk of hip fracture: a three year follow-up study. Bone 18, 487488.
Thane, CW, Pyrnne, CJ, Ginty, F, Bolton-Smith, C, Stear, SJ, Jones, SC & Prentice, A (2002) Dietary phylloquinone (vitamin K1) intake: comparison between adolescents living in Cambridge and a national British sample. Proc Nutr Soc 61, 146A.
Theintz, G, Buchs, B, Rizzoli, R, et al. (1992) Longitudinal monitoring of bone mass accumulation in healthy adolescents: evidence for a marked reduction after 16 years of age at the levels of lumbar spine and femoral neck in female subjects. J Clin Endocrinol Metab 75, 10601065.
Yan, L, Zhou, B, Greenberg, D, et al. (2004) Vitamin K status of older individuals in northern China is superior to that of older individuals in the UK. Br J Nutr 92, 939–945.
Vermeer, C, Gijsbers, BLMG, Craciun, AM, Groenen-Van Dooren, MMCL & Knapen, MHJ (1996) Effects of vitamin K on bone mass and bone metabolism. J Nutr 126, 1187S1191S.
Vermeer, C, Jie, KSG & Knapen, MHJ (1995) Role of vitamin K in bone metabolism. Annu Rev Nutr 15, 1–22.
Vermeer, C, Knapen, MH, Jie, KS & Grobbee, DE (1992) Physiological importance of extra-hepatic vitamin K-dependent carboxylation reactions. Ann NY Acad Sci 669, 2131.
Viljakainen, HT, Natri, A-M, Kärkkäinen, M, Huttunen, MM, Palsae, A, Jakobsen, J, Cashman, KD, Molgaard, C & Lamberg-Allardt, C (2006) A positive doseresponse effect of vitamin D supplementation on site-specific bone mineral augmentation in adolescent girls: a double-blinded randomized placebo-controlled 1-year intervention. J Bone Miner Res 21, 836844.
Weber, P (2001) Vitamin K and bone health. Nutrition 17, 880887.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 11
Total number of PDF views: 100 *
Loading metrics...

Abstract views

Total abstract views: 467 *
Loading metrics...

* Views captured on Cambridge Core between September 2016 - 19th August 2018. This data will be updated every 24 hours.