Skip to main content

Sources, isolation, characterisation and evaluation of probiotics

  • Luis Fontana (a1), Miriam Bermudez-Brito (a1), Julio Plaza-Diaz (a1), Sergio Muñoz-Quezada (a1) and Angel Gil (a1)...

Probiotics are live microorganisms that, when ingested in adequate amounts, provide health benefits to the host. The strains most frequently used as probiotics include lactic acid bacteria and bifidobacteria, which are isolated from traditional fermented products and the gut, faeces and breast milk of human subjects. The identification of microorganisms is the first step in the selection of potential probiotics. The present techniques, including genetic fingerprinting, gene sequencing, oligonucleotide probes and specific primer selection, discriminate closely related bacteria with varying degrees of success. Additional molecular methods, such as denaturing gradient gel electrophoresis/temperature gradient gel electrophoresis and fluorescence in situ hybridisation, are employed to identify and characterise probiotics. The ability to examine fully sequenced genomes has accelerated the application of genetic approaches to elucidate the functional roles of probiotics. One of the best-demonstrated clinical benefits of probiotics is the prevention and treatment of acute and antibiotic-associated diarrhoea; however, there is mounting evidence for a potential role for probiotics in the treatment of allergies and intestinal, liver and metabolic diseases. These positive effects are generally attributed to the ability of probiotics to regulate intestinal permeability, normalise host intestinal microbiota, improve gut immune barrier function and equilibrate the balance between pro-inflammatory and anti-inflammatory cytokines. However, the positive effects of probiotics are not always substantiated by findings from properly conducted clinical trials. Notably, even when the results from randomised, placebo-controlled trials support the beneficial effects of a particular probiotic for a specific indication, the benefits are generally not translatable to other probiotic formulations.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the or variations. ‘’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Sources, isolation, characterisation and evaluation of probiotics
      Available formats
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Sources, isolation, characterisation and evaluation of probiotics
      Available formats
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Sources, isolation, characterisation and evaluation of probiotics
      Available formats
Corresponding author
*Corresponding author: Professor A. Gil, fax +34 958 819132, email
Hide All
1Liong, MT(editor) (2011) Probiotics: biology, genetics and health aspects. Berlin: Springer-Verlag.
2FAO/WHO (2001) Health and nutritional properties of probiotics in food including powder milk with live lactic acid bacteria.
3Guarner, F & Malagelada, JR (2003) Gut flora in health and disease. Lancet 361, 512519.
4Gourbeyre, P, Denery, S & Bodinier, M (2011) Probiotics, prebiotics, and synbiotics: impact on the gut immune system and allergic reactions. J Leukoc Biol 89, 685695.
5Macpherson, AJ & Harris, NL (2004) Interactions between comensal intestinal bacteria and the immune system. Nat Rev Immunol 4, 478485.
6Frick, JS, Schenk, K, Quitadamo, M, et al. (2007) Lactobacillus fermentum attenuates the proinflammatory effect of Yersinia enterocolitica on human epithelial cells. Inflamm Bowel Dis 13, 8390.
7McFarland, (2006) Meta-analysis of probiotics for the prevention of antibiotic associated diarrhea and the treatment of Clostridium difficile disease. Am J Gastroenterol 101, 812822.
8Collins, JK, Thornton, G & Sullivan, GO (1998) Selection of probiotic strains for human application. Int Dairy J 8, 487490.
9Ouwehand, AC, Salminen, S & Isolauri, E (2002) Probiotics: an overview of beneficial effects. Antonie van Leeuwenhoek 82, 279289.
10Collado, MC, Gueimonde, M & Salminen, S (2010) Probiotics in adhesion of pathogens: mechanisms of action. Bioactive Foods Promot Health 23, 353370.
11Yan, F & Polk, DB (2011) Probiotics and immune health. Curr Opin Gastroenterol 27, 496501.
12Lye, HS, Kuan, CY, Ewe, JA, et al. (2009) The improvement of hypertension by probiotics: effects on cholesterol, diabetes, renin, and phytoestrogens. Int J Mol Sci 10, 37553775.
13Pelletier, X, Laure-Boussuge, S & Donazzolo, Y (2001) Hydrogen excretion upon ingestion of dairy products in lactose-intolerant male subjects: importance of the live flora. Eur J Clin Nutr 55, 509512.
14Woodard, GA, Encarnacion, B, Downey, JR, et al. (2009) Probiotics improve outcomes after Roux-en-Y gastric bypass surgery: a prospective randomized trial. J Gastrointest Surg 13, 11981204.
15Karska-Wysocki, B, Bazo, M & Smoragiewicz, W (2010) Antibacterial activity of Lactobacillus acidophilus and Lactobacillus casei against methicillin-resistant Staphylococcus aureus (MRSA). Microbiol Res 165, 674686.
16Liong, MT (2008) Safety of probiotics: translocation and infection. Nutr Rev 66, 192202.
17Rafter, J, Bennett, M, Caderni, G, et al. (2007) Dietary synbiotics reduce cancer risk factors in polypectomized and colon cancer patients. Am J Clin Nutr 85, 488496.
18Moayyedi, P, Ford, AC, Talley, NJ, et al. (2010) The efficacy of probiotics in the treatment of irritable bowel syndrome: a systematic review. Gut 59, 325332.
19Golowczyc, MA, Mobili, P, Garrote, GL, et al. (2007) Protective action of Lactobacillus kefir carrying S-layer protein against Salmonella enterica serovar enteritidis. Int J Food Microbiol 118, 264273.
20Williams, NT (2010) Probiotics. Am J Health Syst Pharm 67, 449458.
21Yu, J, Wang, WH, Menghe, BL, et al. (2011) Diversity of lactic acid bacteria associated with traditional fermented dairy products in Mongolia. J Dairy Sci 94, 32293241.
22Sun, Z, Liu, W, Gao, W, et al. (2010) Identification and characterization of the dominant lactic acid bacteria from kurut: the naturally fermented yak milk in Qinghai, China. J Gen Appl Microbiol 56, 110.
23Lopitz-Otsoa, F, Rementeria, A, Elguezabal, N, et al. (2006) Kefir: a symbiotic yeasts-bacteria community with alleged healthy capabilities. Rev Iberoam Micol 23, 6774.
24Romanin, D, Serradell, M, González Maciel, D, et al. (2010) Down-regulation of intestinal epithelial innate response by probiotic yeasts isolated from kefir. Int J Food Microbiol 140, 102108.
25Patrignani, F, Lanciotti, R, Mathara, JM, et al. (2006) Potential of functional strains, isolated from traditional Maasai milk, as starters for the production of fermented milks. Int J Food Microbiol 107, 111.
26Ya, T, Zhang, Q, Chu, F, et al. (2008) Immunological evaluation of Lactobacillus casei Zhang: a newly isolated strain from koumiss in Inner Mongolia, China. BMC Immunol 9, 68.
27Vizoso Pinto, MG, Franz, CM, Schillinger, U, et al. (2006) Lactobacillus spp. with in vitro probiotic properties from human faeces and traditional fermented products. Int J Food Microbiol 109, 205214.
28Lim, SM & Im, DS (2009) Screening and characterization of probiotic lactic acid bacteria isolated from Korean fermented foods. J Microbiol Biotechnol 19, 178186.
29Won, TJ, Kim, B, Lim, YT, et al. (2011) Oral administration of Lactobacillus strains from Kimchi inhibits atopic dermatitis in NC/Nga mice. J Appl Microbiol 110, 11951202.
30Ayeni, FA, Sánchez, B, Adeniyi, BA, et al. (2011) Evaluation of the functional potential of Weissella and Lactobacillus isolates obtained from Nigerian traditional fermented foods and cow's intestine. Int J Food Microbiol 147, 97104.
31Zago, M, Fornasari, ME, Carminati, D, et al. (2011) Characterization and probiotic potential of Lactobacillus plantarum strains isolated from cheeses. Food Microbiol 28, 10331040.
32Ugarte, MB, Guglielmotti, D, Giraffa, G, et al. (2006) Nonstarter lactobacilli isolated from soft and semihard Argentinean cheeses: genetic characterization and resistance to biological barriers. J Food Prot 69, 29832991.
33Georgieva, RN, Iliev, IN, Chipeva, VA, et al. (2008) Identification and in vitro characterization of Lactobacillus plantarum strains from artisanal Bulgarian white brined cheeses. J Basic Microbiol 48, 234244.
34West, PA, Hewitt, JH & Murphy, OM (1979) Influence of methods of collection and storage on the bacteriology of human milk. J Appl Bacteriol 46, 269277.
35Martin, R, Jiménez, E, Heilig, H, et al. (2009) Isolation of bifidobacteria from breast milk and assessment of the bifidobacterial population by PCR-denaturing gradient gel electrophoresis and quantitative real-time PCR. Appl Environ Microbiol 75, 965969.
36O'hara, AM & Shanahan, F (2006) The gut flora as a forgotten organ. EMBO Rep 7, 688693.
37Martin, R, Langa, S, Reviriego, C, et al. (2003) Human milk is a source of lactic acid bacteria for the infant gut. J Pediatr 143, 754758.
38Arboleya, S, Binetti, A, Salazar, N, et al. (2012) Establishment and development of intestinal microbiota in preterm neonates. FEMS Microbiol Ecol 79, 763772.
39Solis, G, Reyes-Gavilan, CG, De los Fernandez, N, et al. (2010) Establishment and development of lactic acid bacteria and bifidobacteria microbiota in breastmilk and the infant gut. Anaerobe 16, 307310.
40Gueimonde, M, Laitinen, K, Salminen, S, et al. (2007) Breast milk: a source of bifidobacteria for infant gut development and maturation. Neonatology 92, 6466.
41Martin, R, Langa, S, Reviriego, C, et al. (2004) The commensal microflora of human milk: new perspectives for food bacterio therapy and probiotics. Trends Food Sci Technol 15, 121127.
42Perez-Cano, FJ, Dong, K & Yaqoob, P (2010) In vitro immunomodulatory activity of Lactobacillus fermentum CECT5716 and Lactobacillus salivarius CECT5713: two probiotic strains isolated from human breast milk. Immunobiology 215, 9961004.
43Arroyo, R, Martín, V, Maldonado, A, et al. (2010) Treatment of infectious mastitis during lactation: antibiotics versus oral administration of lactobacilli isolated from breast milk. Clin Infect Dis 15, 15511558.
44Jiménez, E, Fernández, L, Maldonado, A, et al. (2008) Oral administration of Lactobacillus strains isolated from breast milk as an alternative for the treatment of infectious mastitis during lactation. Appl Environ Microbiol 74, 46504655.
45Ryan, KA, Jayaraman, T, Daly, P, et al. (2008) Isolation of lactobacilli with probiotic properties from the human stomach. Lett Appl Microbiol 47, 269274.
46Varma, P, Dinesh, KR, Menon, KK, et al. (2010) Lactobacillus fermentum isolated from human colonic mucosal biopsy inhibits the growth and adhesion of enteric and foodborne pathogens. J Food Sci 75, M546M551.
47Ohland, CL & Macnaughton, WK (2010) Probiotic bacteria and intestinal epithelial barrier function. Am J Physiol Gastrointest Liver Physiol 298, G807G819.
48Srůtková, D, Spanova, A, Spano, M, et al. (2011) Efficiency of PCR-based methods in discriminating Bifidobacterium longum ssp. longum and Bifidobacterium longum ssp. infantis strains of human origin. J Microbiol Methods 87, 1016.
49Lin, PP, Hsieh, YM & Tsai, CC (2009) Antagonistic activity of Lactobacillus acidophilus RY2 isolated from healthy infancy feces on the growth and adhesion characteristics of enteroaggregative Escherichia coli. Anaerobe 15, 122126.
50Martín, R, Jiménez, E, Olivares, M, et al. (2006) Lactobacillus salivarius CECT 5713, a potential probiotic strain isolated from infant feces and breast milk of a mother-child pair. Int J Food Microbiol 112, 3543.
51Acharya, MR & Shah, RK (2002) Selection of human isolates of bifidobacteria for their use as probiotics. Appl Biochem Biotechnol 102–103, 8198.
52Petrof, EO (2009) Probiotics and gastrointestinal disease: clinical evidence and basic science. Antiinflamm Antiallergy Agents Med Chem 8, 260269.
53Audisio, MC & Benítez-Ahrendts, MR (2011) Lactobacillus johnsonii CRL1647, isolated from Apis mellifera L. bee-gut, exhibited a beneficial effect on honeybee colonies. Benef Microbes 2, 2934.
54Chu, W, Lu, F, Zhu, W, et al. (2011) Isolation and characterization of new potential probiotic bacteria based on quorum-sensing system. J Appl Microbiol 110, 202208.
55Pérez-Sánchez, T, Balcázar, JL, García, Y, et al. (2011) Identification and characterization of lactic acid bacteria isolated from rainbow trout, Oncorhynchus mykiss (Walbaum), with inhibitory activity against Lactococcus garvieae. J Fish Dis 34, 499507.
56Hill, JE, Baiano, JC & Barnes, AC (2009) Isolation of a novel strain of Bacillus pumilus from penaeid shrimp that is inhibitory against marine pathogens. J Fish Dis 32, 10071016.
57Rivera-Espinoza, Y & Gallardo-Navarro, Y (2010) Non-dairy probiotic products. Food Microbiol 27, 111.
58Haller, D, Colbus, H, Ganzle, MG, et al. (2001) Metabolic and functional properties of lactic acid bacteria in the gastro-intestinal ecosystem: a comparative in vitro study between bacteria of intestinal and fermented food origin. Syst Appl Microbiol 24, 218226.
59Abriouel, H, Benomar, N, Pulido, RP, et al. (2011) Annotated genome sequence of Lactobacillus pentosus MP-10, which has probiotic potential, from naturally fermented Aloreña green table olives. J Bacteriol 193, 45594560.
60Zeng, XQ, Pan, DD & Guo, YX (2010) The probiotic properties of Lactobacillus buchneri P2. J Appl Microbiol 108, 20592066.
61Hartemink, R & Rombouts, FM (1999) Comparison of media for the detection of bifidobacteria, lactobacilli and total anaerobes from faecal samples. J Microbiol Meth 36, 181192.
62Hartemink, R, Kok, BJ, Weenk, GH, et al. (1996) Raffinose-Bifidobacterium (RB) agar, a new selective medium for bifidobacteria. J Microbiol Meth 27, 3343.
63Beerens, H (1990) An elective and selective isolation medium for Bifidobacterium spp. Lett Appl Microbiol 11, 155157.
64Dave, RI & Shah, NP (1995) Evaluation of media for selective enumeration of Streptococcus thermophilus, Lactobacillus delbrueckii ssp. bulgaricus, Lactobacillus acidophilus, and bifidobacteria. J Dairy Sci 79, 15291536.
65Munoa, FJ & Pares, R (1988) Selective medium for isolation and enumeration of Bifidobacterium species. Appl Environ Microbiol 54, 17151718.
66Nebra, Y & Blanch, AR (1999) A new selective medium for Bifidobacterium spp. Appl Environ Microbiol 65, 51735176.
67Silvi, S, Rumney, CJ & Rowland, IR (1996) An assessment of three selective media for bifidobacteria in faeces. J Appl Bacteriol 81, 561564.
68Rogosa, M, Mitchell, JA & Wiseman, RF (1951) A selective medium for the isolation and enumeration of oral and fecal lactobacilli. J Bacteriol 62, 132133.
69Downes, FP & Ito, K (2001) Compendium of Methods for the Microbiological Examination of Foods, 4th ed. pp. 601648. Washington, DC: American Public Health Association.
70MacFaddin, JD (1985) Media for Isolation-Cultivation-Identification-Maintenance of Medical Bacteria. vol. 1, pp. 275284. Baltimore, MD: Williams & Wilkins.
71Amann, RI, Ludwig, W & Schleifer, KH (1995) Phylogenetic identification and in situ detection of individual cells without cultivation. Microbiol Rev 59, 143169.
72Vandamme, P, Pot, B, Gillis, M, et al. (1996) Polyphasic taxonomy, a consensus approach to bacterial systematic. Microbiol Rev 60, 407438.
73Woese, CR (1987) Bacterial evolution. Microbiol Rev 51, 221271.
74Winker, S & Woese, CR (1991) A definition of the domains Archaea, Bacteria and Eucarya in terms of small subunit ribosomal RNA characteristics. Syst Appl Microbiol 14, 305310.
75DDBJ: DNA Data Bank of Japan (2012) (accessed February 2012).
76European Bioinformatics Institute (EBI) (2012) Databases at the EBI.
77National Institutes of Health (NIH) National Center for Biotechnology Information (NCBI) (2012) GenBank.
78Muyzer, G & Smalla, K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73, 127141.
79Langendijk, PS, Schut, F, Jansen, GJ, et al. (1995) Quantitative fluorescence in situ hybridization of Bifidobacterium spp. With genus-specific 16S rRNA targeted probes and its application in fecal samples. Appl Environ Microbiol 61, 30693075.
80Fallani, M, Young, D, Scott, J, et al. (2010) Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 51, 7784.
81Leblond-Bourget, N, Philippe, H, Mangin, I, et al. (1996) 16S rRNA and 16S to 23S internal transcribed spacer sequence analyses reveal inter-and intraspecific Bifidobacterium phylogeny. Int J Syst Bacteriol 46, 102111.
82Fehér, T, Burland, V & Pósfai, G (2012) In the fast lane: large-scale bacterial genome engineering. J Biotechnol 160, 7279.
83de los Reyes-Gavilán, CG, Suárez, A, Fernández-García, M, et al. (2011) Adhesion of bile-adapted Bifidobacterium strains to the HT29-MTX cell line is modified after sequential gastrointestinal challenge simulated in vitro using human gastric and duodenal juices. Res Microbiol 162, 514519.
84Masco, L, Crockaert, C, van Hoorde, K, et al. (2007) In vitro assessment of the gastrointestinal transit tolerance of taxonomic reference strains from human origin and probiotic product isolated of Bifidobacterium. J Dairy Sci 90, 35723578.
85FAO/WHO (2002) Guidelines for the evaluation of probiotics in food. Food and Health Agricultural Organisation of the United Nations – World Health Organisation. Working group report. London, Ontario.
86Sanz, Y (2006) Ecological and functional implications of the acid adaptation ability of Bifidobacterium: a way of selecting improved probiotic strains. Int dairy J 17, 12841289.
87Mainville, I, Arcand, Y & Farnworth, ER (2005) A dynamic model that simulates the human upper gastrointestinal tract for the study of probiotics. Int J Food Microbiol 99, 287296.
88Dunne, C, O'Mahony, L, Murphy, L, et al. (2001) In vitro selection criteria for probiotic bacteria of human origin: correlation with in vivo findings. Am J Clin Nutr 73, 386392.
89Zavaglia, AG, Kociubinsky, G, Pérez, P, et al. (1998) Isolation and characterization of Bifidobacterium strains for probiotic formulation. J Food Prot 61, 865873.
90Charteris, WP, Kelly, PM, Morelli, L, et al. (1998) Development and application of an in vitro methodology to determine the transit tolerance of potentially probiotic Lactobacillus and Bifidobacterium species in the upper human gastrointestinal tract. J Appl Microbiol 84, 759768.
91Takahashi, N, Xiao, JZ, Miyaji, K, et al. (2004) Selection of acid tolerant bifidobacteria and evidence for a low-pH-inducible acid tolerance response in Bifidobacterium longum. J Dairy Res 71, 340345.
92Matsumoto, M, Ohishi, H & Benno, Y (2004) H+-ATPase activity in Bifidobacterium with special reference to acid tolerance. Int J Food Microbiol 93, 109113.
93Matto, J, Alakomi, HL, Vaari, A, et al. (2006) Influence of processing conditions on Bifidobacterium animalis subsp., lactis functionality with a special focus on acid tolerance and factors affecting it. Int Dairy J 16, 10291037.
94Chenoll, E, Casinos, B, Bataller, E, et al. (2011) Novel probiotic Bifidobacterium bifidum CECT 7366 strain active against the pathogenic bacterium Helicobacter pylori. Appl Environ Microbiol 77, 13351343.
95Muñoz, JA, Chenoll, E, Casinos, B, et al. (2011) Novel probiotic Bifidobacterium longum subsp. infantis CECT 7210 strain active against rotavirus infections. Appl Environ Microbiol 77, 87758783.
96Li, Q, Chen, Q, Ruan, H, et al. (2010) Isolation and characterisation of an oxygen, acid and bile resistant Bifidobacterium animalis subsp. lactis Qq08. J Sci Food Agric 90, 13401346.
97Bosch, M, Rodriguez, M, Garcia, F, et al. (2012) Probiotic properties of Lactobacillus plantarum CECT 7315 and CECT 7316 isolated from faeces of healthy children. Lett Appl Microbiol 54, 240246.
98Mills, S, Stanton, C, Fitzgerald, GF, et al. (2011) Enhancing the stress responses of probiotics for a lifestyle from gut to product and back again. Microb Cell Fact 10, Suppl. 1, S19.
99Marles-Wright, J & Lewis, R (2007) Stress response of bacteria. Curr Opin Struct Biol 17, 755760.
100Rizzello, CG, Cassone, A, Di Cagno, R, et al. (2008) Synthesis of angiotensin I-converting enzyme (ACE)-inhibitory peptides and g-aminobutyric acid (GABA) during sourdough fermentation by selected lactic acid bacteria. J Agric Food Chem 56, 69366943.
101Dicks, LM & Botes, M (2010) Probiotic lactic acid bacteria in the gastro-intestinal tract: health benefits, safety and mode of action. Benef Microbes 1, 1129.
102Lenaerts, K, Bouwman, FG, Lamers, WH, et al. (2007) Comparative proteomic analysis of cell lines and scrapings of the human intestinal epithelium. BMC Genomics 8, 91.
103Huang, SH, He, L, Zhou, Y, et al. (2009) Lactobacillus rhamnosus GG suppresses meningitic E. coli K1 penetration across human intestinal epithelial cells in vitro and protects neonatal rats against experimental hematogenous meningitis. Int J Microbiol 2009, 647862.
104Gopal, PK, Prasad, J, Smart, J, et al. (2001) In vitro adherence properties of Lactobacillus rhamnosus DR20 and Bifidobacterium lactis DR10 strains and their antagonistic activity against an enterotoxigenic Escherichia coli. Int J Food Microbiol 67, 207216.
105Izquierdo, E, Medina, M, Ennahar, S, et al. (2008) Resistance to simulated gastrointestinal conditions and adhesion to mucus as probiotic criteria for Bifidobacterium longum strains. Curr Microbiol 56, 613618.
106Tuomola, EM, Ouwehand, AC & Salminen, SJ (1999) The effect of probiotic bacteria on the adhesion of pathogens to human intestinal mucus. FEMS Immunol Med Microbiol 26, 137142.
107Lesuffleur, T, Barbat, A, Dussaulx, E, et al. (1990) Growth adaption to methotrexate of HT-29 human colon carcinoma cell is associated with their ability to differentiate into columnar absorptive and mucus secreting cells. Cancer Res 50, 63346343.
108Leteurtre, E, Gouyer, V, Rousseau, K, et al. (2004) Differential mucin expression in colon carcinoma HT-29 clones with variable resistance to 5-fluorouracil and methotrexate. Biol Cell 96, 145151.
109Laparra, JM & Sanz, Y (2009) Comparison of in vitro models to study bacterial adhesion to the intestinal epithelium. Lett Appl Microbiol 49, 695701.
110Collado, MC, Meriluoto, J & Salminen, S (2007) Role of commercial probiotic strains against human pathogen adhesion to intestinal mucus. Lett Appl Microbiol 45, 454460.
111Salminen, S, Bouley, C, Boutron-Ruault, MC, et al. (1998) Functional food science and gastrointestinal physiology and function. Br J Nutr 80, 147171.
112Sambuy, Y, De Angelis, I, Ranaldi, G, et al. (2005) The Caco-2 cell line as a model of the intestinal barrier: influence of cell and culture-related factors on Caco-2 cell functional characteristics. Cell Biol Toxicol 21, 126.
113Ferreira, CL, Grześkowiak, Ł, Collado, MC, et al. (2011) In vitro evaluation of Lactobacillus gasseri strains of infant origin on adhesion and aggregation of specific pathogens. J Food Prot 74, 14821487.
114Todoriki, K, Mukai, T, Sato, S, et al. (2001) Inhibition of adhesion of food-borne pathogens o Caco-2 cells by Lactobacillus strains. J Appl Microbiol 91, 154159.
115Chu, H, Kang, S, Ha, S, et al. (2005) Lactobacillus acidophilus expressing recombinant K99 adhesive fimbriae has an inhibitory effect on adhesion of enterotoxigenic Escherichia coli. Microbiol Immunol 49, 941948.
116Tsai, CC, Lin, PP & Hsieh, YM (2008) Three Lactobacillus strains from healthy infant stool inhibit enterotoxigenic Escherichia coli grown in vitro. Anaerobe 14, 6167.
117Candela, M, Perna, F, Carnevali, P, et al. (2008) Interaction of probiotic Lactobacillus and Bifidobacterium strains with human intestinal epithelial cells: adhesion properties, competition against enteropathogens and modulation of IL-8 production. Int J Food Microbiol 31, 286292.
118Jankowska, A, Laubitz, D, Antushevich, H, et al. (2008) Competition of Lactobacillus paracasei with Salmonella enterica for adhesion to Caco-2 cells. J Biomed Biotechnol 2008, 357964.
119Tien, MT, Girardin, SE, Regnault, B, et al. (2006) Anti-inflammatory effect of Lactobacillus casei on Shigella-infected human intestinal epithelial cells. J Immunol 176, 12281237.
120Cho, IL, Lee, NK & Hahm, YT (2009) Characterization of Lactobacillus spp. isolated from the feces of breast-feeding piglets. J Biosci Bioeng 108, 194198.
121Pillai, A & Nelson, R (2008) Probiotics for treatment of Clostridium difficile-associated colitis in adults. The Cochrane Database of Systematic Reviews issue 1, CD004611.
122Wang, H, Yan, Y, Wang, J, et al. (2012) Production and characterization of antifungal compounds produced by Lactobacillus plantarum IMAU10014. PLoS One 7, e29452.
123Naidoo, K, Gordon, M, Fagbemi, AO, et al. (2011) Probiotics for maintenance of remission in ulcerative colitis. The Cochrane Database of Systematic Reviews issue 12, CD007443.
124Von Wright, A (2005) Regulating the safety of probiotics – the European approach. Curr Pharm Des 11, 1723.
125Wassenaar, TM & Klein, G (2008) Safety aspects and implications of regulation of probiotic bacteria in food and food supplements. J Food Prot 71, 17341741.
126Introduction of a Qualified Presumption of Safety (QPS) approach for assessment of selected microorganisms referred to EFSA (2007).
127Opinion of the Scientific Committee on Animal Nutrition on the criteria for assessing the safety of micro-organisms resistant to antibiotics of human clinical and veterinary importance (2002). (accessed February 2012).
128Sanders, ME, Akkermans, LM, Haller, D, et al. (2010) Safety assessment of probiotics for human use. Gut Microbes 1, 164185.
129Cencič, A & Langerholc, T (2010) Functional cell models of the gut and their applications in food microbiology. Int J Food Microbiol 141, Suppl. 1, S4S14.
130Borchers, AT, Selmi, C, Meyers, FJ, et al. (2009) Probiotics and immunity. J Gastroenterol 44, 2646.
131Asemi, Z, Jazayeri, S, Najafi, M, et al. (2011) Effects of daily consumption of probiotic yoghurt on inflammatory factors in pregnant women: a randomized controlled trial. Pak J Biol Sci 14, 476482.
132Asemi, Z, Jazayeri, S, Najafi, M, et al. (2012) Effect of daily consumption of probiotic yoghurt on oxidative stress in pregnant women: a randomized controlled clinical trial. Ann Nutr Metab 60, 6268.
133Dugoua, JJ, Machado, M, Zhu, X, et al. (2009) Safety in pregnancy: a systematic review and meta-analysis of RCT of Lactobacillus, Bifidobacterium, and Saccharomyces spp. J Obstet Gynaecol Can 31, 542552.
134Vliagoftis, H, Kouranos, VD, Betsi, GI, et al. (2008) Probiotics for the treatment of allergic rhinitis and asthma: systematic review of RCT. Ann Allergy Asthma Immunol 101, 570579.
135Kuitunen, M, Kukkonen, K & Savilahti, EJ (2009) Pro- and prebiotic supplementation induces a transient reduction in hemoglobin concentration in infants. J Pediatr Gastroenterol Nutr 49, 626630.
136Martínez-Cañavate, A, Sierra, S, Lara-Villoslada, F, et al. (2009) A probiotic dairy product containing L. gasseri CECT5714 and L. coryniformis CECT5711 induces immunological changes in children suffering from allergy. Pediatr Allergy Immunol 20, 592600.
137Olivares, M, Díaz-Ropero, MO, Gómez, N, et al. (2006) Oral administration of two probiotic strains, Lactobacillus gasseri CECT5714 and Lactobacillus coryniformis CECT5711, enhances the intestinal function of healthy adults. Int J Food Microbiol 107, 104111.
138Boyle, RJ, Bath-Hextall, FJ, Leonardi-Bee, J, et al. (2009) Probiotics for treating eczema. A systematic review. Clin Exp Allergy 39, 11171127.
139Lee, J, Seto, D & Bielory, L (2008) Meta-analysis of clinical trials of probiotics for prevention and treatment of pediatric atopic dermatitis. J Allergy Clin Immunol 121, 116121.
140Allen, SJ, Martinez, EG, Gregorio, GV, et al. (2010) Probiotics for treating acute infectious diarrhoea. The Cochrane Database of Systematic Reviews issue 11, CD003048.
141Johnston, BC, Goldenberg, JZ, Vandvik, PO, et al. (2011) Probiotics for the prevention of pediatric antibiotic-associated diarrhea. The Cochrane Database of Systematic Reviews issue 11, CD004827.
142Bernaola Aponte, G, Bada Mancilla, CA, Carreazo Pariasca, NY, et al. (2010) Probiotics for treating persistent diarrhoea in children. The Cochrane Database of Systematic Reviews issue 11, CD007401.
143Alfaleh, K, Anabrees, J, Bassler, D, et al. (2011) Probiotics for prevention of necrotizing enterocolitis in preterm infants. The Cochrane Database of Systematic Reviews issue 3, CD005496.
144Braga, TD, da Silva, GAP, de Lira, PIC, et al. (2011) Efficacy of Bifidobacterium breve and Lactobacillus casei oral supplementation on necrotizing enterocolitis in very-low-birth-weight preterm infants: a double-blind, randomized, controlled trial. Am J Clin Nutr 93, 8186.
145Sang, LX, Chang, B, Zhang, WL, et al. (2010) Remission induction and maintenance effect of probiotics on ulcerative colitis: a meta-analysis. World J Gastroenterol 16, 19081915.
146Mimura, T, Rizzello, F, Helwig, U, et al. (2004) Once daily high dose probiotic therapy (VSL#3) for maintaining remission in recurrent or refractory pouchitis. Gut 53, 108114.
147Kühbacher, T, Ott, SJ, Helwig, U, et al. (2006) Bacterial and fungal microbiota in relation to probiotic therapy (VSL#3) in pouchitis. Gut 55, 833841.
148Doherty, GA, Bennett, GC, Cheifetz, AS, et al. (2010) Meta-analysis: targeting the intestinal microbiota in prophylaxis for post-operative Crohn's disease. Aliment Pharmacol Ther 31, 802809.
149McFarland, LV & Dublin, S (2008) Meta-analysis of probiotics for the treatment of irritable bowel syndrome. World J Gastroenterol 14, 26502661.
150Gawrońska, A, Dziechciarz, P, Horvath, A, et al. (2007) A randomized double-blind placebo-controlled trial of Lactobacillus GG for abdominal pain disorders in children. Aliment Pharmacol Ther 25, 1771784.
151Bausserman, M & Michail, S (2005) The use of Lactobacillus GG in irritable bowel syndrome in children: a double-blind randomized control trial. J Pediatr 147, 197201.
152Enck, P, Zimmermann, K, Menke, G, et al. (2008) A mixture of Escherichia coli (DSM 17252) and Enterococcus faecalis (DSM 16440) for treatment of the irritable bowel syndrome – a randomized controlled trial with primary care physicians. Neurogastroenterol Motil 20, 11031109.
153Liu, JE, Zhang, Y, Zhang, J, et al. (2010) Probiotic yoghurt effects on intestinal flora of patients with chronic liver disease. Nurs Res 59, 426432.
154Aller, R, De Luis, DA, Izaola, O, et al. (2011) Effect of a probiotic on liver aminotransferases in nonalcoholic fatty liver disease patients: a double blind randomized clinical trial. Eur Rev Med Pharmacol Sci 15, 10901095.
155Zhang, MM, Cheng, JQ, Lu, YR, et al. (2010) Use of pre-, pro- and synbiotics in patients with acute pancreatitis: a meta-analysis. World J Gastroenterol 16, 39703978.
156Sharma, B, Srivastava, S, Singh, N, et al. (2011) Role of probiotics on gut permeability and endotoxemia in patients with acute pancreatitis. J Clin Gastroenterol 45, 442448.
157Ejtahed, HS, Mohtadi-Nia, J, Homayouni-Rad, A, et al. (2011) Effect of probiotic yoghurt containing Lactobacillus acidophilus and Bifidobacterium lactis on lipid profile in individuals with type 2 diabetes mellitus. J Dairy Sci 94, 32883294.
158Hummelen, R, Changalucha, J, Butamanya, NL, et al. (2011) Effect of 25 weeks probiotic supplementation on immune function of HIV patients. Gut Microbes 2, 8085.
159Trois, L, Cardoso, EM & Miura, E (2008) Use of probiotics in HIV-infected children: a randomized double-blind controlled study. J Trop Pediatr 54, 1924.
160Anukam, KC, Osazuwa, EO, Osadolor, HB, et al. (2008) Yoghurt containing probiotic Lactobacillus rhamnosus GR-1 and L. reuteri RC-14 helps resolve moderate diarrhea and increases CD4 count in HIV/AIDS patients. J Clin Gastroenterol 42, 239243.
161Stapleton, AE, Au-Yeung, M, Hooton, TM, et al. (2011) Randomized, placebo-controlled phase 2 trial of a Lactobacillus crispatus probiotic given intravaginally for prevention of recurrent urinary tract infection. Clin Infect Dis 52, 12121217.
162Hao, Q, Lu, Z, Dong, BR, et al. (2011) Probiotics for preventing acute upper respiratory tract infections. The Cochrane Database of Systematic Reviews issue 9, CD006895.
163Siempos, Nt II, aidou, TK & Falagas, ME (2010) Impact of the administration of probiotics on the incidence of ventilator-associated pneumonia: a meta-analysis of RCT. Crit Care Med 38, 954962.
164Jenks, K, Stebbings, S, Burton, J, et al. (2010) Probiotic therapy for the treatment of spondyloarthritis: a randomized controlled trial. J Rheumatol 37, 21182125.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed