Skip to main content
×
×
Home

Stearic acids at sn-1, 3 positions of TAG are more efficient at limiting fat deposition than palmitic and oleic acids in C57BL/6 mice

  • Shiou-Wah Gouk (a1), Sit-Foon Cheng (a1), Augustine Soon-Hock Ong (a1) and Cheng-Hock Chuah (a1)
Abstract

In the present study, we investigated the effect of long-acyl chain SFA, namely palmitic acid (16 : 0) and stearic acid (18 : 0), at sn-1, 3 positions of TAG on obesity. Throughout the 15 weeks of the experimental period, C57BL/6 mice were fed diets fortified with cocoa butter, sal stearin (SAL), palm mid fraction (PMF) and high-oleic sunflower oil (HOS). The sn-1, 3 positions were varied by 16 : 0, 18 : 0 and 18 : 1, whilst the sn-2 position was preserved with 18 : 1. The HOS-enriched diet was found to lead to the highest fat deposition. This was in accordance with our previous postulation. Upon normalisation of total fat deposited with food intake to obtain the fat:feed ratio, interestingly, mice fed the SAL-enriched diet exhibited significantly lower visceral fat/feed and total fat/feed compared with those fed the PMF-enriched diet, despite their similarity in SFA–unsaturated fatty acid–SFA profile. That long-chain SFA at sn-1, 3 positions concomitantly with an unsaturated FA at the sn-2 position exert an obesity-reducing effect was further validated. The present study is the first of its kind to demonstrate that SFA of different chain lengths at sn-1, 3 positions exert profound effects on fat accretion.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Stearic acids at sn-1, 3 positions of TAG are more efficient at limiting fat deposition than palmitic and oleic acids in C57BL/6 mice
      Available formats
      ×
      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Stearic acids at sn-1, 3 positions of TAG are more efficient at limiting fat deposition than palmitic and oleic acids in C57BL/6 mice
      Available formats
      ×
      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Stearic acids at sn-1, 3 positions of TAG are more efficient at limiting fat deposition than palmitic and oleic acids in C57BL/6 mice
      Available formats
      ×
Copyright
Corresponding author
* Corresponding author: Dr S.-F. Cheng, fax +603 7967 4193, email sfcheng@um.edu.my
References
Hide All
1 Sanz, M, Lopez-Bote, CJ, Menoyo, D, et al. (2000) Abdominal fat deposition and fatty acid synthesis are lower and β-oxidation is higher in broiler chickens fed diets containing unsaturated rather than saturated fat. J Nutr 130, 30343037.
2 Hariri, N, Gougeon, R & Thibault, L (2010) A highly saturated fat-rich diet is more obesogenic than diets with lower saturated fat content. Nutr Res 30, 632643.
3 Matsuo, T, Takeuchi, H, Suzuki, H, et al. (2002) Body fat accumulation is greater in rats fed a beef tallow diet than in rats fed a safflower or soybean oil diet. Asia Pacific J Clin Nutr 11, 302308.
4 Timmers, S, de Vogel-van den Bosch, J, de Wit, N, et al. (2011) Differential effects of saturated versus unsaturated dietary fatty acids on weight gain and myocellular lipid profiles in mice. Nutr Diabetes 1, e11.
5 Stachon, M, Furstenberg, E & Gromadzka-Ostrowska, J (2006) Effects of high-fat diets on body composition, hypothalamus NPY, and plasma leptin and corticosterone levels in rats. Endocrine 30, 6974.
6 Jen, KL, Buison, A, Pellizzon, M, et al. (2003) Differential effects of fatty acids and exercise on body weight regulation and metabolism in female Wistar rats. Exp Biol Med 228, 843849.
7 Ikemoto, S, Takahashi, M, Tsunoda, N, et al. (1996) High-fat diet-induced hyperglycemia and obesity in mice: differential effects of dietary oils. Metabolism 45, 15391546.
8 Newman, RE, Bryden, WL, Fleck, E, et al. (2002) Dietary n-3 and n-6 fatty acids alter avian metabolism: metabolism and abdominal fat deposition. Br J Nutr 88, 1118.
9 Czernichow, S, Thomas, D & Bruckert, E (2010) n-6 Fatty acids and cardiovascular health: a review of the evidence for dietary intake recommendations. Br J Nutr 104, 788796.
10 Okuno, M, Kajiwara, K, Imai, S, et al. (1997) Perilla oil prevents the excessive growth of visceral adipose tissue in rats by down-regulating adipocyte differentiation. J Nutr 127, 17521757.
11 Micallef, M, Munro, I, Phang, M, et al. (2009) Plasma n-3 polyunsaturated fatty acids are negatively associated with obesity. Br J Nutr 102, 13701374.
12 Martinez-Victoria, E & Yago, MD (2012) Omega 3 polyunsaturated fatty acids and body weight. Br J Nutr 107, S107S116.
13 Kojima, M, Tachibana, N, Yamahira, T, et al. (2010) Structured triacylglycerol containing behenic and oleic acids suppresses triacylglycerol absorption and prevents obesity in rats. Lipids Health Dis 9, 7782.
14 Gouk, SW, Cheng, SF, Mok, JSL, et al. (2013) Long-chain SFA at the sn-1, 3 positions of TAG reduce body fat deposition in C57BL/6 mice. Br J Nutr (epublication ahead of print 12 June 2013).
15 Mattson, FH, Nolen, GA & Webb, MR (1979) The absorbability by rats of various triglycerides of stearic and oleic acid and the effect of dietary calcium and magnesium. J Nutr 109, 16821687.
16 Brink, EJ, Haddeman, E, de Fouw, NJ, et al. (1995) Positional distribution of stearic acid and oleic acid in a triacylglycerol and dietary calcium concentration determines the apparent absorption of these fatty acids in rats. J Nutr 125, 23792387.
17 Folch, J, Leens, M & Sloane-Stanley, GH (1957) A simple method for the isolation and purification of total lipids from animal tissue. J Biol Chem 226, 497509.
18 Gouk, SW, Cheng, SF, Ong, ASH, et al. (2012) Rapid and direct quantitative analysis of positional fatty acids in triacylglycerols using 13C NMR. Eur J Lipid Sci Technol 114, 510519.
19 Cheng, SF, Choo, YM, Ma, AN, et al. (2005) Rapid synthesis of palm-based monoacylglycerols. J Am Oil Chem Soc 82, 791795.
20 Surwit, RS, Kuhn, CM, Cochrane, C, et al. (1988) Diet-induced type II diabetes in C57BL/6J mice. Diabetes 37, 11631167.
21 Surwit, RS, Feinglos, MN, Rodin, J, et al. (1995) Differential effects of fat and sucrose on the development of obesity and diabetes in C57BL/6J and A/J mice. Metabolism 44, 645651.
22 Winzell, MS & Ahrén, B (2004) The high-fat diet-fed mouse: a model for studying mechanisms and treatment of impaired glucose tolerance and type 2 diabetes. Diabetes 53, S215S219.
23 Kennedy, AJ, Ellacott, KLJ, King, VL, et al. (2010) Mouse models of the metabolic syndrome. Dis Model Mech 3, 156166.
24 Gunstone, FD & Harwood, JL (2007) Occurrence and characterisation of oils and fats. In The Lipid Handbook, 3rd ed., pp. 92108 [Gunstone, FD, Harwood, JL and Dijkstra, AJ, editors]. Boca Raton, FL: CRC Press.
25 Lien, EL, Yuhas, RJ, Boyle, FG, et al. (1993) Corandomization of fats improves absorption in rats. J Nutr 123, 18591867.
26 Freeman, CP (1969) Properties of fatty acids in dispersion of emulsified lipid and bile salt and the significance of these properties in fat absorption in the pig and the sheep. Br J Nutr 23, 249263.
27 Yamaguchi, T, Kaneda, M & Kakinuma, K (1986) Effect of saturated and unsaturated fatty acids on the oxidative metabolism of human neutrophils. The role of calcium ion in the extracellular medium. Biochim Biophys Acta 861, 440446.
28 Irani, RR & Callis, CF (1960) Metal complexing by phosphorus compounds II. Solubility of calcium soaps of linear carboxylic acids. J Phys Chem 64, 17411743.
29 Emery, EM, Schmid, TL, Kahn, HS, et al. (1993) A review of the association between abdominal fat distribution, health outcome measures, and modifiable risk factors. Am J Health Promot 7, 342353.
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

British Journal of Nutrition
  • ISSN: 0007-1145
  • EISSN: 1475-2662
  • URL: /core/journals/british-journal-of-nutrition
Please enter your name
Please enter a valid email address
Who would you like to send this to? *
×

Keywords

Type Description Title
WORD
Supplementary materials

Gouk Supplementary Materials
Table S4

 Word (51 KB)
51 KB
WORD
Supplementary materials

Gouk Supplementary Materials
Table S3

 Word (45 KB)
45 KB
WORD
Supplementary materials

Gouk Supplementary Materials
Table S5

 Word (51 KB)
51 KB
WORD
Supplementary materials

Gouk Supplementary Materials
Table S2

 Word (47 KB)
47 KB
WORD
Supplementary materials

Gouk Supplementary Materials
Table S1

 Word (68 KB)
68 KB
WORD
Supplementary materials

Gouk Supplementary Materials
Figure S1

 Word (72 KB)
72 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed