Skip to main content Accessibility help
×
Home

Transferrin saturation concentrations associated with telomeric ageing: a population-based study

  • Chol Shin (a1) and Inkyung Baik (a2)

Abstract

There are limited data on the association between Fe overload and leucocyte telomere length (LTL), known as a useful biomarker of the replicative ageing of cells. The aim of the study was to evaluate associations between Fe-status biomarkers and LTL. A cross-sectional study included 1174 men and women aged 50–79 years who provided blood samples for assays of Fe-status biomarkers including ferritin, transferrin saturation (TSAT), total Fe-binding capacity (TIBC) and relative LTL. They were free of hepatitis, potential infection or Fe deficiency. In multiple linear regression analysis adjusted for potential confounding variables, log-transformed LTL was positively associated with TIBC (adjusted coefficient estimate for its highest quartile: 0·17 (se 0·03), P<0·001) and inversely associated with TSAT (adjusted coefficient estimate for its third and fourth quartiles: −0·09 (se 0·03), P<0·01). These associations were consistent after additional adjustment for serum concentrations of high-sensitivity C-reactive protein, alanine transaminase and aspartate transaminase. In particular, participants with not only abnormally high concentrations (>45 %) but also with high-normal concentrations (35–45 %) of TSAT had shorter LTL compared with those with low-normal concentrations (<30 %) (P<0·05). We also observed that less-active or obese persons with high TSAT concentrations had shorter LTL than others. Our findings that cellular ageing is influenced not only by Fe overload but also by high-normal concentrations of TSAT support the hypothesis regarding the detrimental effects of labile Fe, which has a potent pro-oxidant activity in the body.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      Transferrin saturation concentrations associated with telomeric ageing: a population-based study
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      Transferrin saturation concentrations associated with telomeric ageing: a population-based study
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      Transferrin saturation concentrations associated with telomeric ageing: a population-based study
      Available formats
      ×

Copyright

Corresponding author

* Corresponding author: I. Baik, fax +82 2 910 5249, email ibaik@kookmin.ac.kr

References

Hide All
1. Beard, JL (2001) Iron biology in immune function, muscle metabolism and neuronal functioning. J Nutr 131, 568S579S.
2. Salonen, JT, Nyyssönen, K, Korpela, H, et al. (1992) High stored iron levels are associated with excess risk of myocardial infarction in eastern Finnish men. Circulation 86, 803811.
3. Ellervik, C, Tybjærg-Hansen, A & Nordestgaard, BG (2011) Total mortality by transferrin saturation levels: two general population studies and a metaanalysis. Clin Chem 57, 459466.
4. Mainous, AG 3rd, Gill, JM & Carek, PJ (2004) Elevated serum transferrin saturation and mortality. Ann Fam Med 2, 133138.
5. Stack, AG, Mutwali, AI, Nguyen, HT, et al. (2014) Transferrin saturation ratio and risk of total and cardiovascular mortality in the general population. QJM 107, 623633.
6. Sempos, CT, Looker, AC, Gillum, RF & Makuc, DM (1994) Body iron stores and the risk of coronary heart disease. N Engl J Med 330, 11191124.
7. Menke, A, Muntner, P, Fernández-Real, JM, et al. (2012) The association of biomarkers of iron status with mortality in US adults. Nutr Metab Cardiovasc Dis 22, 734740.
8. Piperno, A (1998) Classification and diagnosis of iron overload. Haematologica 83, 447455.
9. Gujja, P, Rosing, DR, Tripodi, DJ, et al. (2010) Iron overload cardiomyopathy: better understanding of an increasing disorder. J Am Coll Cardiol 56, 10011012.
10. Adams, PC, Reboussin, DM, Barton, JC, et al. (2005) Hemochromatosis and Iron Overload Screening (HEIRS) Study Research Investigators. Hemochromatosis and iron-overload screening in a racially diverse population. N Engl J Med 352, 17691778.
11. Henle, ES & Linn, S (1997) Formation, prevention, and repair of DNA damage by iron/hydrogen peroxide. J Biol Chem 272, 1909519098.
12. Saretzki, G & Von Zglinicki, T (2002) Replicative aging, telomeres, and oxidative stress. Ann N Y Acad Sci 959, 2429.
13. Mainous, AG 3rd, Wright, RU, Hulihan, MM, et al. (2013) Telomere length and elevated iron: the influence of phenotype and HFE genotype. Am J Hematol 88, 492496.
14. Johnson, S (2000) Iron catalyzed oxidative damage, in spite of normal ferritin and transferrin saturation levels and its possible role in Werner’s syndrome, Parkinson’s disease, cancer, gout, rheumatoid arthritis, etc. Med Hypotheses 55, 242244.
15. Baik, I, Kim, J, Abbott, RD, et al. (2008) Association of snoring with chronic bronchitis. Arch Intern Med 168, 167173.
16. Baik, I & Shin, C (2008) Prospective study of alcohol consumption and metabolic syndrome. Am J Clin Nutr 87, 14551463.
17. Cawthon, RM (2002) Telomere measurement by quantitative PCR. Nucleic Acids Res 30, e47.
18. World Health Organization (2000) International Association for the Study of Obesity, International Obesity Task Force The Asia-Pacific Perspective: Redefining Obesity and Its Treatment. Sydney: Health Communications.
19. McLaren, CE, Barton, JC, Eckfeldt, JH, et al. (2010) Heritability of serum iron measures in the hemochromatosis and iron overload screening (HEIRS) family study. Am J Hematol 85, 101105.
20. Barton, JC, McDonnell, SM, Adams, PC, et al. (1998) Management of hemochromatosis. Hemochromatosis Management Working Group. Ann Intern Med 129, 932939.
21. Cade, JE, Moreton, JA, O’Hara, B, et al. (2005) Diet and genetic factors associated with iron status in middle-aged women. Am J Clin Nutr 82, 813820.
22. Mainous, AG 3rd, Wells, B, Carek, PJ, et al. (2004) The mortality risk of elevated serum transferrin saturation and consumption of dietary iron. Ann Fam Med 2, 139144.
23. Brissot, P, Ropert, M, Le Lan, C, et al. (2012) Non-transferrin bound iron: a key role in iron overload and iron toxicity. Biochim Biophys Acta 1820, 403410.
24. Kepinska, M, Szyller, J & Milnerowicz, H (2015) The influence of oxidative stress induced by iron on telomere length. Environ Toxicol Pharmacol 40, 931935.
25. Fitzpatrick, AL, Kronmal, RA, Gardner, JP, et al. (2007) Leukocyte telomere length and cardiovascular disease in the cardiovascular health study. Am J Epidemiol 165, 1421.
26. Honig, LS, Kang, MS, Schupf, N, et al. (2012) Association of shorter leukocyte telomere repeat length with dementia and mortality. Arch Neurol 69, 13321339.
27. Rode, L, Nordestgaard, BG & Bojesen, SE (2015) Peripheral blood leukocyte telomere length and mortality among 64,637 individuals from the general population. J Natl Cancer Inst 107, djv074.
28. Daniali, L, Benetos, A, Susser, E, et al. (2013) Telomeres shorten at equivalent rates in somatic tissues of adults. Nat Commun 4, 1597.
29. Demissie, S, Levy, D, Benjamin, EJ, et al. (2006) Insulin resistance, oxidative stress, hypertension, and leukocyte telomere length in men from the Framingham Heart Study. Aging Cell 5, 325330.
30. Galdston, M, Feldman, JG, Levytska, V, et al. (1987) Antioxidant activity of serum ceruloplasmin and transferrin available iron-binding capacity in smokers and nonsmokers. Am Rev Respir Dis 135, 783787.
31. Cairo, G, Tacchini, L, Pogliaghi, G, et al. (1995) Induction of ferritin synthesis by oxidative stress. Transcriptional and post-transcriptional regulation by expansion of the ‘free’ iron pool. J Biol Chem 270, 700703.
32. Magnusson, MK, Sigfusson, N, Sigvaldason, H, et al. (1994) Low iron-binding capacity as a risk factor for myocardial infarction. Circulation 89, 102108.
33. Valdes, AM, Andrew, T, Gardner, JP, et al. (2005) Obesity, cigarette smoking, and telomere length in women. Lancet 366, 662664.
34. Weischer, M, Bojesen, SE & Nordestgaard, BG (2014) Telomere shortening unrelated to smoking, body weight, physical activity, and alcohol intake: 4,576 general population individuals with repeat measurements 10 years apart. PLoS Genet 10, e1004191.
35. Strandberg, TE, Strandberg, AY, Saijonmaa, O, et al. (2012) Association between alcohol consumption in healthy midlife and telomere length in older men. The Helsinki Businessmen Study. Eur J Epidemiol 27, 815822.
36. Du, M, Prescott, J, Kraft, P, et al. (2012) Physical activity, sedentary behavior, and leukocyte telomere length in women. Am J Epidemiol 175, 414422.
37. Olusi, SO (2002) Obesity is an independent risk factor for plasma lipid peroxidation and depletion of erythrocyte cytoprotectic enzymes in humans. Int J Obes Relat Metab Disord 26, 11591164.
38. Hernández, R, Mahedero, G, Caballero, MJ, et al. (1999) Effects of physical exercise in pre-and postmenopausal women on lipid peroxidation and antioxidant systems. Endocr Res 25, 153161.
39. Lee, JY, Shin, C & Baik, I (2017) Longitudinal associations between micronutrient consumption and leukocyte telomere length. J Hum Nutr Diet 30, 236243.
40. Xu, Q, Parks, CG, DeRoo, LA, et al. (2009) Multivitamin use and telomere length in women. Am J Clin Nutr 89, 18571863.

Keywords

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed