Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-27T13:10:50.188Z Has data issue: false hasContentIssue false

Trimethylamine N-oxide, choline and its metabolites are associated with the risk of non-alcoholic fatty liver disease

Published online by Cambridge University Press:  06 March 2024

Rong Ma*
Affiliation:
Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, People’s Republic of China
Guangying Shi
Affiliation:
Department of Hepatology, Xinjiang Corps Hospital, Xinjiang 832104, People’s Republic of China
Yanfang Li
Affiliation:
Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, People’s Republic of China
Han Shi
Affiliation:
Department of Infectious Diseases, the First Affiliated Hospital of Chengdu Medical College, Chengdu 610500, People’s Republic of China
*
*Corresponding author: Rong Ma, email marong_123@126.com

Abstract

It is inconclusive whether trimethylamine N-oxide (TMAO) and choline and related metabolites, namely trimethylamine (TMA), l-carnitine, betaine and dimethylglycine (DMG), are associated with non-alcoholic fatty liver disease (NAFLD). Our objective was to investigate these potential associations. Additionally, we sought to determine the mediating role of TMAO. In this 1:1 age- and sex-matched case–control study, a total of 150 pairs comprising NAFLD cases and healthy controls were identified. According to the fully adjusted model, after the highest tertile was compared with the lowest tertile, the plasma TMAO concentration (OR = 2·02 (95 % CI 1·04, 3·92); P trend = 0·003), l-carnitine concentration (OR = 1·79 (1·01, 3·17); P trend = 0·020) and DMG concentration (OR = 1·81 (1·00, 3·28); P trend = 0·014) were significantly positively associated with NAFLD incidence. However, a significantly negative association was found for plasma betaine (OR = 0. 50 (0·28, 0·88); P trend = 0·001). The restricted cubic splines model consistently indicated positive dose–response relationships between exposure to TMAO, l-carnitine, and DMG and NAFLD risk, with a negative association being observed for betaine. The corresponding AUC increased significantly from 0·685 (0·626, 0·745) in the traditional risk factor model to 0·769 (0·716, 0·822) when TMAO and its precursors were included (l-carnitine, betaine and choline) (P = 0·032). Mediation analyses revealed that 14·7 and 18·6 % of the excess NAFLD risk associated with l-carnitine and DMG, respectively, was mediated by TMAO (the P values for the mediating effects were 0·021 and 0·036, respectively). These results suggest that a higher concentration of TMAO is associated with increased NAFLD risk among Chinese adults and provide evidence of the possible mediating role of TMAO.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Wai-Sun Wong, V, Ekstedt, M, Lai-Hung Wong, G, et al. (2023) Changing epidemiology, global trends and implications for outcomes of NAFLD. J Hepatol 79, 842852.CrossRefGoogle Scholar
Le, MH, Le, DM, Baez, TC, et al. (2023) Global incidence of non-alcoholic fatty liver disease: a systematic review and meta-analysis of 63 studies and 1 201 807 persons. J Hepatol 79, 287295.CrossRefGoogle Scholar
Zhou, F, Zhou, J, Wang, W, et al. (2019) Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: a systematic review and meta-analysis. Hepatology 70, 11191133.CrossRefGoogle Scholar
Huang, DQ, El-Serag, HB & Loomba, R (2021) Global epidemiology of NAFLD-related HCC: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 18, 223238.CrossRefGoogle ScholarPubMed
Younossi, Z, Anstee, QM, Marietti, M, et al. (2018) Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol 15, 1120.CrossRefGoogle ScholarPubMed
Aron-Wisnewsky, J, Vigliotti, C, Witjes, J, et al. (2020) Gut microbiota and human NAFLD: disentangling microbial signatures from metabolic disorders. Nat Rev Gastroenterol Hepatol 17, 279297.CrossRefGoogle ScholarPubMed
Chen, J & Vitetta, L (2020) Gut microbiota metabolites in NAFLD pathogenesis and therapeutic implications. Int J Mol Sci 21, 5214.CrossRefGoogle ScholarPubMed
Thomas, MS & Fernandez, ML (2021) Trimethylamine N-oxide (TMAO), diet and cardiovascular disease. Curr Atheroscler Rep 23, 12.CrossRefGoogle ScholarPubMed
Li, D, Lu, Y, Yuan, S, et al. (2022) Gut microbiota-derived metabolite trimethylamine-N-oxide and multiple health outcomes: an umbrella review and updated meta-analysis. Am J Clin Nutr 116, 230243.CrossRefGoogle ScholarPubMed
Gatarek, P & Kaluzna-Czaplinska, J (2021) Trimethylamine N-oxide (TMAO) in human health. EXCLI J 20, 301319.Google ScholarPubMed
Palmnäs-Bédard, MSA, Costabile, G, Vetrani, C, et al. (2022) The human gut microbiota and glucose metabolism: a scoping review of key bacteria and the potential role of SCFAs. Am J Clin Nutr 116, 862874.CrossRefGoogle ScholarPubMed
Zhu, T & Goodarzi, MO (2020) Metabolites linking the gut microbiome with risk for type 2 diabetes. Curr Nutr Rep 9, 8393.CrossRefGoogle ScholarPubMed
Theofilis, P, Vordoni, A & Kalaitzidis, RG (2022) Trimethylamine N-oxide levels in non-alcoholic fatty liver disease: a systematic review and meta-analysis. Metabolites 12, 1243.CrossRefGoogle ScholarPubMed
Wiedeman, AM, Barr, SI, Green, TJ, et al. (2018) Dietary choline intake: current state of knowledge across the life cycle. Nutrients 10, 1513.CrossRefGoogle ScholarPubMed
Wang, Z, Levison, BS, Hazen, JE, et al. (2014) Measurement of trimethylamine-N-oxide by stable isotope dilution liquid chromatography tandem mass spectrometry. Anal Biochem 455, 3540.CrossRefGoogle ScholarPubMed
Piazzolla, VA & Mangia, A (2020) Noninvasive diagnosis of NAFLD and NASH. Cells 9, 1005.CrossRefGoogle ScholarPubMed
Tang, A, Tan, J, Sun, M, et al. (2013) Nonalcoholic fatty liver disease: MR imaging of liver proton density fat fraction to assess hepatic steatosis. Radiology 267, 422431.CrossRefGoogle ScholarPubMed
Barrea, L, Annunziata, G, Muscogiuri, G, et al. (2018) Trimethylamine-N-oxide (TMAO) as novel potential biomarker of early predictors of metabolic syndrome. Nutrients 10, 1971.CrossRefGoogle ScholarPubMed
Sobel, ME (1982) Asymptotic confidence intervals for indirect effects in structural equation models. Sociol Methodol 13, 290312.CrossRefGoogle Scholar
Massey, W, Osborn, LJ, Banerjee, R, et al. (2022) Flavin-containing monooxygenase 3 (FMO3) is critical for dioxin-induced reorganization of the gut microbiome and host insulin sensitivity. Metabolites 12, 364.CrossRefGoogle ScholarPubMed
Liu, A, Cai, Y, Yuan, Y, et al. (2023) Efficacy and safety of carnitine supplementation on NAFLD: a systematic review and meta-analysis. Syst Rev 12, 74.CrossRefGoogle ScholarPubMed
Chen, YM, Liu, Y, Zhou, RF, et al. (2016) Associations of gut-flora-dependent metabolite trimethylamine-N-oxide, betaine and choline with non-alcoholic fatty liver disease in adults. Sci Rep 6, 19076.CrossRefGoogle ScholarPubMed
Shi, C, Pei, M, Wang, Y, et al. (2022) Changes of flavin-containing monooxygenases and trimethylamine-N-oxide may be involved in the promotion of non-alcoholic fatty liver disease by intestinal microbiota metabolite trimethylamine. Biochem Biophys Res Commun 594, 17.CrossRefGoogle ScholarPubMed
Song, MJ & Malhi, H (2019) The unfolded protein response and hepatic lipid metabolism in non alcoholic fatty liver disease. Pharmacol Ther 203, 107401.CrossRefGoogle ScholarPubMed
Chavez-Tapia, NN, Uribe, M, Ponciano-Rodriguez, G, et al. (2009) New insights into the pathophysiology of nonalcoholic fatty liver disease. Ann Hepatol 8, S917.CrossRefGoogle ScholarPubMed
Gao, X, Liu, X, Xu, J, et al. (2014) Dietary trimethylamine N-oxide exacerbates impaired glucose tolerance in mice fed a high fat diet. J Biosci Bioeng 118, 476481.CrossRefGoogle ScholarPubMed
Kim, H & Fang, S (2018) Crosstalk between FXR and TGR5 controls glucagon-like peptide 1 secretion to maintain glycemic homeostasis. Lab Anim Res 34, 140146.CrossRefGoogle ScholarPubMed
Pathak, P, Xie, C, Nichols, RG, et al. (2018) Intestine farnesoid X receptor agonist and the gut microbiota activate G-protein bile acid receptor-1 signaling to improve metabolism. Hepatology 68, 15741588.CrossRefGoogle ScholarPubMed
Goh, YQ, Cheam, G & Wang, Y (2021) Understanding choline bioavailability and utilization: first step toward personalizing choline nutrition. J Agric Food Chem 69, 1077410789.CrossRefGoogle ScholarPubMed
Dumas, ME, Rothwell, AR, Hoyles, L, et al. (2017) Microbial-host co-metabolites are prodromal markers predicting phenotypic heterogeneity in behavior, obesity, and impaired glucose tolerance. Cell Rep 20, 136148.CrossRefGoogle ScholarPubMed
Leustean, AM, Ciocoiu, M, Sava, A, et al. (2018) Implications of the intestinal microbiota in diagnosing the progression of diabetes and the presence of cardiovascular complications. J Diabetes Res 2018, 5205126.CrossRefGoogle ScholarPubMed
Guo, J, Meng, Y, Zhao, Y, et al. (2015) Myricetin derived from Hovenia dulcis Thunb. Ameliorates vascular endothelial dysfunction and liver injury in high choline-fed mice. Food Funct 6, 16201634.CrossRefGoogle ScholarPubMed
Kathirvel, E, Morgan, K, Nandgiri, G, et al. (2010) Betaine improves nonalcoholic fatty liver and associated hepatic insulin resistance: a potential mechanism for hepatoprotection by betaine. Am J Physiol Gastrointest Liver Physiol 299, G10681077.CrossRefGoogle ScholarPubMed
Wang, Z, Yao, T, Pini, M, et al. (2010) Betaine improved adipose tissue function in mice fed a high-fat diet: a mechanism for hepatoprotective effect of betaine in nonalcoholic fatty liver disease. Am J Physiol Gastrointest Liver Physiol 298, G634642.CrossRefGoogle ScholarPubMed
Song, Z, Deaciuc, I, Zhou, Z, et al. (2007) Involvement of AMP-activated protein kinase in beneficial effects of betaine on high-sucrose diet-induced hepatic steatosis. Am J Physiol Gastrointest Liver Physiol 293, G894902.CrossRefGoogle ScholarPubMed
Xu, L, Huang, D, Hu, Q, et al. (2015) Betaine alleviates hepatic lipid accumulation via enhancing hepatic lipid export and fatty acid oxidation in rats fed with a high-fat diet. Br J Nutr 113, 18351843.CrossRefGoogle ScholarPubMed
Coskun, T, Bina, HA, Schneider, MA, et al. (2008) Fibroblast growth factor 21 corrects obesity in mice. Endocrinology 149, 60186027.CrossRefGoogle ScholarPubMed
Zeisel, SH (2013) Metabolic crosstalk between choline/1-carbon metabolism and energy homeostasis. Clin Chem Lab Med 51, 467475.CrossRefGoogle ScholarPubMed
Jaeschke, H (2011) Reactive oxygen and mechanisms of inflammatory liver injury: present concepts. J Gastroenterol Hepatol 26, 173179.CrossRefGoogle ScholarPubMed
Supplementary material: File

Ma et al. supplementary material

Ma et al. supplementary material
Download Ma et al. supplementary material(File)
File 14.1 KB